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1. Motivation 

Over the years the habits of the people, regarding the procuring, preparation and storage 
of food products have changed [1]. Centuries back, people procured and prepared food by 
themselves. Man used to hunt, whereas women cooked the meat and other plants that grew 
around the household for the entire family. Old habits started to slowly change, animals were 
tamed and domesticated, fruits and vegetables were planted around the households [1]. 
Centuries passed and people continued growing fruits and breeding animals for their families, 
for sale or for barter.  

People’s habits regarding food acquisition and preparation started to change mostly in 
the XX century when technological advances allowed farmers to use horse-drawn combine and, 
later on, steam powered tractors. Slowly, mechanized agriculture replaced the old ways of 
agriculture. In addition, technological progress determined the apparition of the first factories 
that prepared food for sale. The products were placed in packages and sent to selling points 
where people could buy them according to their preferences, needs and budget.  

Nowadays, a lot of products are available at markets and supermarkets. The 
procurement of food has become a lot easier, but it has also come with some disadvantages. 
Firstly, people are no longer directly involved in the preparation of the food products that they 
consume. Therefore, they cannot control or change the ingredients that are used in foods or 
beverages. The downsides may concern the quality of the ingredients or the replacement of 
some ingredients with their chemical and cheapest version. For example, vanillin is a natural 
substance found within vanilla beans, but it can also be chemically synthesized with reduced 
costs [2]. Also, sugar can be replaced by chemically synthesized sweeteners, known as artificial 
sweeteners, which are more sweet than regular sugar [3].  

Artificial sweeteners are a type of food additive. Additives can be classified in several 
categories based on the main functions. For example, there are additives that counteract the 
spreading of bacteria, others determine a texture (creamy, crispy), control the colouring or 
regulate the acidity of the products. All the additives are available on the Codex Alimentarius 
provided by FAO (Food and Agriculture Organization) and WHO (World Health Organization) 
[4], [5]. Each additive was associated with an E number. In a single product may be one or more 
food additives. Table 1.1 presents additives within four different classes, their acceptable daily 
intake (ADI), the molecular mass, the E number and the molecular formula.  

Table 1.1 Food additives (adapted from [6]) 

Food additive Molecular 
Formula 

E 
number 

Molar mass 
[g ∙ mol-1] 

Type of 
additive 

ADI [mg/kg bw] 
[7] 

Potassium sorbate C6H7KO2 E202 150.218 Preservative 0-25 
Sodium benzoate C7H5NaO2 E211 144.105 Preservative 0-5 

Ascorbic acid C6H8O6 E300 176.12 Antioxidant Not specified 
Aspartame C14H18N2O5 E951 294.307 Sweetener 0-40 
Saccharin C7H5NO3S E954 183.18 Sweetener 0-5 

Acesulfame 
potassium 

C4H4KNO4S E950 201.242 Sweetener 0-15 

Citric acid C6H8O7 E330 210.14 Acidity 
regulator 

Unlimited 

Trisodium citrate Na3C6H5O7 E331 294.10 Acidity 
regulator 

Unspecified 

 
The possible effects of these additives have been intensively studied (aspartame [8]– 

[11], acesulfame potassium [12], saccharine [13]). The health effects that might be induced by 
these additives and the need of people to avoid certain ingredients due to health-related 
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problems (diabetes, lactose intolerance, allergies) represent valid motives for finding precise 
and fast analysis methods for food products and beverages. Among the analysis techniques that 
were found in literature can be enlisted spectroscopy, colorimetry, interferometry and HPLC 
(high-performance liquid chromatography). What these techniques have in common is the use 
of light for the analysis of the samples. For example, UV (ultraviolet) spectroscopy was used for 
the differentiation and classification of wines samples [14], fluorescence spectroscopy for 
honey analysis [15], whereas FTIR (Fourier-transform infrared spectroscopy) analysis was 
used for contaminated milk discrimination [16].  

The study of light sciences began after the mathematical model of the electromagnetic 
field was developed by the scientist James Maxwell. From that moment on, light was not 
considered only a ray, but was also defined as a wave. Light was also of great interest for 
scientists such as Isaac Newton, Christian Huygens or Thomas Young. Up until this moment, 
light has been used in various domains: medicine [17], military [18], astronomy [19], biology 
[20], not only for the analysis of edibles [15], [21]– [24].  

This thesis, entitled “Optical sensors and advanced methods with application on food 
additives and beverages analysis”, presents a short theoretical study of optical sensors and 
optical analysis methods, study that is followed by the presentation of the research results that 
were obtained. The research focused its interest on the analysis of beverages and food additives 
utilizing optical sensors and techniques. Regarding, the large number of research papers that 
target the possible effects of food additives, the increased variety of food products and 
beverages that may contain these substances, and the diversity of the techniques that are used 
for the analysis, it can be concluded that the discrimination and characterization of food 
additives is an up-to-date research topic of interest great interest for the modern society.  

2. Objectives  

This work proposes a theoretical study on the types of optical sensors and advanced 
analysis methods based on light. The main objective of the paper regarded the use of the studied 
sensors and optical methods for the analysis of food additives and beverages. Therefore, the 
main objective was divided into four objectives as follows: 

• The testing of experimental setups constructed with low-cost optical devices for the 
analysis of milk and juice samples. 

• The analysis of food additives using ultraviolet spectroscopy and the spectra 
classification using machine learning techniques.  

• The classification of the UV spectra of simple and mixed solutions of food additives using 
artificial and convolutional neural networks (ANN and CNN). 

• The testing of holographic sensors recorded on a commercial photopolymer with 
various food additives, the recording of the optical displacement caused by the analytes 
and the determination of the relationship between the concentration and the optical 
response of the sensors.  

3. Methodology  

A research methodology was established to achieve the proposed objectives. The 
methodology included three main stages: documentation and theoretical study, research and 
dissemination.  
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3.1 Documentation and theoretical study  

In the first phase, a documentation was carried out in the field of optical sensors and 
advanced analysis methods, which allowed to create an overview image on the subject. Various 
types of optical sensors were identified, and real applications were carefully analyzed. The 
functioning principle, the advantages and the disadvantages of each technique were compared.  
The process of study and documentation was carried out continuously during the PhD studies 
in order to be familiar with the main research topics of other teams and discover new niches 
that could be treated, studied and researched.  

3.2 Research  

The theoretical study was followed by research work that was conducted in 
collaboration with various research groups. The research stage began by testing experimental 
setups with low-cost optical devices such as LEDs (light emitting diodes), optical sensors and 
non-specialized spectrometers. The experimental setups were used to analyze the time 
evolution of non-alcoholic beverages such as juices and milk. This project was accomplished 
with the help of the “Optoelectronics” group at the Electronics, Telecommunication and 
Information Technology Faculty from the Technical University of Cluj-Napoca.  

The research work was continued at the Technical University of Riga, in the „Biomedical 
Engineering and Nanotechnologies” (BINI) department. The mobility was possible through an 
ERASMUS scholarship. During this mobility the theoretical basis of optically induced 
electrophoresis, and microfluidics were studied. A tri-dimensional model for the coupling of a 
LASER (light amplification by stimulated emission of light) with an optical fiber was designed, 
3D-printed and assembled. The device was built for the light analysis of cells.  

Another scholarship was obtained in the project “Network of excellence in applied 
research and innovation for doctoral and postdoctoral programs/InoHubDoc”. The scholarship 
facilitated the collaboration with the Department of Polymer Composites from the Raluca Ripan 
Institute for Research in Chemistry from Cluj-Napoca. During this collaboration, the work 
focused on the analysis of food additives using UV spectroscopy followed by spectra 
classification using artificial intelligence techniques.  

Finally, holographic sensors were studied during an ERASMUS mobility at the University 
of Zaragoza. The mobility started with a theoretical study on holography and it was continued 
with the testing of the holographic sensors recorded on a commercial photopolymer with 
various substances. The study of holographic sensors was only possible with the help and 
guidance of the “Laboratorio de Holografía” members within the “Tecnología Óptica Láser” 
group (Applied Physics Department, University of Zaragoza).  

The research work was consolidated by participating in three summer schools and one 
young research conference. One of the summer schools is called “V International School on 
Light Sciences and Technologies V-ISLiST” and focuses on light sciences. It took place in 
Santander, Spain in June 2022.  

The other two summer schools, called ELaRa, focused on pedagogical subjects and took 
place in September 2022 and June 2023. Also, the participation in the young research 
conference called “1a Jornada de Jóvenes Investigadores del Grupo TOL – 1a JOJITOL”, organized 
at the University of Zaragoza, was an interesting experience which provided great knowledge 
regarding the research topics of other young scientists.  
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3.3 Dissemination  

The results obtained during the entire PhD study were disseminated at four 
international conferences and by publishing an article in the journal „Sensors” (Q2). Another 
article is currently under review at the journal “Optics and Laser Technology”. 

Furthermore, the results were also appreciated in a Novice Insights organized by the 
Electronics, Telecommunication and Information Technology Faculty from the Technical 
University of Cluj-Napoca. The paper was awarded the second prize at the Master/PhD section 
in 2023.  

4. Thesis Structure  

This thesis was divided into two main parts: “Current Stage of Knowledge” and “Personal 
Contributions”. The first part encompasses chapters 1 and 2, whereas the second part includes 
chapters 3-8.  

4.1 Current Stage of Knowledge  

The first part of the thesis includes a theoretical study of advanced methods used for 
sample analysis and for data processing. This part was divided into two chapters: “Optical 
sensors and analysis techniques” and “Machine learning and deep learning techniques”.  

The first chapter encompasses three subchapters: “Optical sensors”, “Optical analysis 
techniques” and “The analysis of food additives and beverages”. This chapter offers a short 
presentation regarding the types of optical sensors and analysis techniques, ending with the 
presentation research studies where beverages and food additives were analyzed using the 
aforementioned techniques or sensors.  

The second chapter was also partitioned into three subchapters: “Artificial Neural 
Networks”, “Convolutional Neural Networks” and “Applications”. In these subchapters, the 
architecture and the parameters of artificial and convolutional neural networks are presented 
and explained. The third subchapter focuses on real applications where optical techniques were 
used with machine and deep learning technique.   

4.1.1 Optical sensors and analysis techniques 

Chapter 1, “Optical sensors and analysis techniques”, presents an introduction 
regarding the types of optical sensors and the analysis techniques that imply the use of light. 
Optical sensors have been used in medicine for glucose measurements [25], in health 
monitoring devices [26], for soil analysis systems [27], but also for food analysis [28].  

The theoretical study has established that optical sensors can be divided into two main 
categories. The first category includes sensors that can measure light intensity and transform 
it into an electrical signal (which can afterwards be processed within an electronic circuit) [29]. 
These devices are known as photodetectors and include three types of sensors: photoresistors, 
phototransistors and photodiodes. These sensors can be integrated into CMOS and CCD image 
sensors or inside appliances such as spectrometers [30] or chromatographs [31]. 

The second category of optical sensors includes holographic and optical fiber sensors. 
These devices are able to measure external parameters such as temperature, strain, humidity 
or the presence of a certain analyte based on the changes that appear in their optical 
parameters. Optical fiber sensor were used to measure temperature [32], [33] or humidity 
[[34]–[36], whereas holographic sensors were utilized for pH detection [37], [38] and glucose 
determination [39], [40].  
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The theoretical study was continued with the identification of analysis methods that use 
light for the sample characterization. Among the techniques can be listed spectroscopy, 
interferometry, holography and HPLC. Spectroscopy is an analysis technique which studies how 
much light can a sample absorb/transmit [30]. Spectroscopic methods can be classified based 
on the type of electromagnetic radiation that is used in the analysis. There is ultraviolet 
spectroscopy, infrared spectroscopy, fluorescence spectroscopy, but also FTIR spectroscopy 
(Fourier-transform infrared spectroscopy).  

Interferometry is another analysis method that uses light waves. It is based on the 
interference of two light waves that are emitted by a monochromatic light source. The light 
waves come from the same source, but they travel on distinct paths until they meet again. An 
interference pattern is created when the waves meet, and depending on the application the 
pattern may contain information about the substance that is analyzed. The devices used for this 
technique are called interferometers. The most commonly used interferometers are Mach-
Zehnder, Michelson, Sagnac și Fabry-Perot.  

Another technique that uses the interference of waves is holography [41]. Tri-
dimensional images can be recorded with this technique. The main components that are 
required for recording a hologram are: a coherent and monochromatic light source (e.g. 
LASER), a material sensitive to light which is known as a photopolymer and the object whose 
image will be captured in the hologram.  

HPLC is a separation technique by which chemical species within a mixture can be 
separated, identified and quantified. The technique requires the use of a pump, a column, 
injectors and a photodetector [42]. Normally, there is an array of photodetectors within the 
appliance which can detect radiation in the visible and ultraviolet domain.  

The theoretical study has highlighted that the analysis techniques based on light are 
currently very frequently utilized. Recent research papers describe the analysis of food 
products, beverages and food additives using UV spectroscopy [43], [44], infrared spectroscopy  
[45], [46], holography [47] or HPLC [48]–[51].  

4.1.2 Machine learning and deep learning techniques  

Chapter 2 describes the operation principle of machine and deep leaning techniques. 
These techniques are part of artificial intelligence methods and were successfully used for voice 
and face recognition, email sorting or for self-driving auto vehicles.  

The algorithms can learn the most important features of the datasets, make new 
predictions as accurate as possible and improve their performance. They must firstly be trained 
and tested, steps followed by the validation of the models using novel datasets. The initial 
dataset must be divided into three subsets: one for training (it is the largest dataset, containing 
approximately 80% of the data recordings), one for testing (when the predicted results are 
compared with the actual results) and one for validation (when the system is able to identify 
new datasets based on the two previous steps). Examples of machine learning techniques are 
decision trees, k-NN (k-nearest neighbors) or SVM (support vector machine).  

Deep learning techniques include methods whose operating principle is similar to the 
one of the human brains. The algorithms are based on artificial neural networks that are built 
from several layers that contain artificial neurons. The architecture of an artificial neural 
network includes an input layer, one or more hidden layers and an output layer. These layers 
are also called fully connected layers. Beside these layers, in a convolutional neural network, 
are also present convolutional layers followed by pooling layers. The convolutional and pooling 
layers are separated from the fully connected layers by a flatten layer.  

 The theoretical study included articles regarding the architecture of deep learning 
techniques [52]–[55] and articles where machine and deep learning techniques were used 
together with optical analysis techniques for beverage analysis [23], food analysis [56]–[59] or 
food additives identification [60]. For example, improved SVM was combined with terahertz 
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spectroscopy for the analysis of additives containing coumarin  [60] but also with laser-induced 
breakdown spectroscopy for the analysis gelatine samples [56].  

4.2 Personal Contributions 

The second part of the thesis presents the research results obtained throughout the PhD 
period. In the first part of the thesis, optical sensor and analysis methods were theoretically 
studied. In the second part, all the acquired knowledge about optical sensors and advanced 
techniques was used for practical applications. The experimental work focused on the analysis 
of liquid samples of food additives and beverages. Therefore, the second part was divided into 
five chapters: “Introduction and objectives”, “Experimental setups for beverage analysis”, 
“Machine learning techniques for food additives classification”, “Deep learning techniques for 
food additive classification”, “Holographic sensors” and “Final Conclusions”. 

Chapter 3 makes a brief introduction in the thesis thematic and presents the main 
objects that were to fulfill. Chapters 4-7 detail the solutions proposed for the analysis of 
beverages and food additives and the research results. This part is finalized with Chapter 8, 
which is dedicated to presenting the main conclusions and highlighting the personal 
contributions of this thesis.   

4.2.1 Optical analysis setups 

Chapter 4, called „Experimental setups for beverages analysis” presents experimental 
setups used for analyzing milk and juice samples (natural and commercial). It was desired to 
use low-cost optical devices such as LEDs (light emitting diodes), optical sensors and non-
specialized spectrometers in the experimental setups. At the moment, there is specialized 
laboratory equipment that can examine food and drink samples, the drawback regarding its 
price and its large dimensions. Therefore, the goal was to test if a simple experimental setup 
with LEDs and optical sensors could indicate a change of the analyzed samples.  

This study was based on two articles [61], [62] that described analysis systems using 
low-cost devices.  The first one presents the use of an UV LED and the ML8511 sensor for the 
detection of nitrites and nitrates within water samples [61]. The second article uses the TCS200 
color sensor to detect the correlation between the absorbance spectra of erythrocytes and the 
number of cells within blood samples [62]. Other applications used UV LEDs for water 
sterilization [63] and infrared devices (LEDs and phototransistors) for isopropyl alcohol 
detection [64].  

 
Figure 4.1 Experimental setup (adapted from [65] © 2021 IEEE) 

The proposed experimental setup for juice and milk analysis was based on the following 
components: the AS7262 sensor with six channels in the visible domain [66] and a white LED 
[67]. A cuvette was placed between the light source and the sensor. The juice or milk sample 
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was deposited in the cuvette. The analysis relied on analyzing and comparing the values 
acquired by the sensor over a period. The values were expected to change due to a natural 
process known as fermentation. Figure 4.1 shows the experimental setup constructed with the 
two optical components. The LED was powered using a HW-131 module which can provide 
voltages of 3.3V and 5V. The sensor was connected to the microcontroller ATMEGA328P from 
Arduino Board. The board read the values obtained from the sensor.  

The emitter, the cuvette and the sensor needed to be perfectly aligned so the emitted 
light would come in contact with the sample, and if not absorbed, pass through it and reach the 
sensor. Alignment was possible through 3D (tri-dimensional) models which were designed 
according to the dimensions of the components. The structures were constructed using a 3D 
printer. Figure 4.2 illustrates the tri-dimensional model for the sustaining structure used to 
hold the optical devices. The lateral opening from Figure 4.2 (a) and (b) allowed radiation to 
pass from the source to the sensor. Figure 4.2 (c) shows the printed structure with the optical 
sensor attached to it.  

The optical sensor can be attached to the structure using the two lateral extremities, 
which were specially designed according to the board dimensions. The extremities are shown 
in Figure 4.2 (b). By introducing the opening of the sensor’s board in the lateral extremities the 
sensor is kept fixed, preventing erroneous measurements. To prevent the sample from 
evaporating a 3D model for a lid was designed for the cuvettes. The cuvette lids, the cuvette, the 
sensor and the sustaining structure are shown in Figure 4.2 (c). 

 

 
(a)      (b)     (c) 

Figure 4.2 Sustaining structures (a) left view (b) right view (c) 3D printed structure, AS7262 sensor, cuvette and 
cuvette lid [65] © 2021 IEEE 

Three sets of measurements were made with milk samples. The results of the first set 
are shown in Figure 4.3 (a). The light intensity detected by the sensor increased over the first 
days of analysis. During the seven-day analysis the texture of the milk sample changed from 
liquid to solid (at the end of the measurements). Therefore, based on the results it was 
concluded that the rise might be an indicator of a natural process known as fermentation.  

To verify if the measurements are repeatable, the experiment was repeated two more 
times. Figure 4.3 (b) presents the results of the second set, the rise in the measured values being 
also visible. Similar results were obtained for the third set of measurements which is 
represented in Figure 4.3 (c). 

The experimental setup was also used with commercial juice samples. Three types of 
juices were chosen and analyzed within an eleven-day period, but there was no intensity change 
visible. The results for one the commercial juice are shown in Figure 4.3 (d). The study was 
continued with samples of natural juices. The three types of fruits that were analysed are 
presented in Table 4.1. Besides the intensity values read by the optical sensor, the pH was also 
monitored using a digital pH-meter.  
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(a)       (b) 

 

   

          (c)       (d) 

Figure 4.3 Analysis results for juice and milk samples (a) first set of measurements (milk) (adapted from [65] © 
2021 IEEE) (b) second set of measurement (milk); (c) third set of measurements (milk); (d) measurements for a 

commercial juice sample   

Figure 4.4 (a), (b) and (c) show the intensity results obtained with the AS7262 sensor 
for the three citrus juices, whereas Figure 4.4 (d) depicts the pH evolution of the samples. The 
results from Table 4.1 have indicated that the pH values decrease, whereas the light intensity 
read by the sensor increases, especially for the 450 nm channel (that the quantity of light 
absorbed by the samples decreased).  

Table 4.1 pH of natural citric juices 

Citrus Fruit Reference pH [68]  Initial pH Final pH ΔpH 

Lemon juice 2.34 ± 1.8 2.7 2.4 0.3 

Orange juice 3.60 ± 1.9 4 3.6 0.4 

Grapefruit juice  3.00 ± 2.5 3.5 3.3 0.2 

The results showed that the experimental setup with low-cost devices may provide 
information regarding the decay of the analyzed samples. The results obtained with the AS7262 
sensor were compared to the ones obtained in other study with the AS7265x. This device is a 
smart spectral sensor that can measure absorbance values for a wide domain of wavelength 
(410 and 940 nm), compared to the AS7262 sensor which can detect the light intensity of only 
six channels within the visible domain. This device was used for the analysis of milk, honey and 
other liquid samples [69]. Some of the milk samples were adulterated with urea to compare the 
absorbance values obtained for non-adulterated and adulterated samples. The results have 
indicated that the pure milk samples had an absorbance value higher than the ones that were 
adulterated. Similarly, in this study, milk samples with high intensity values (low absorbance 
values) were considered to be fermented.  
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          (a)       (b) 

 

          (c)       (d) 

Figure 4.4 Experimental results (a) grapefruit juice; (b) orange juice; (c) lemon juice; (d) pH measurements for 
all juices from [70] 

 

4.2.2 Machine learning techniques for food additive classification 

In chapter 5, called “Machine learning techniques for food additive classification” is 
presented an approach for the classification of five food additives using UV spectroscopy and 
machine learning techniques.  

 

 

Figure 4.5 Cuvette positioning into the spectrometer  (A. reference cuvette; B. sample cuvette) 

The spectroscopic measurements were performed on liquid sample, the additives being 
dissolved in distillate water prior to the analysis. The liquid samples were placed in quartz 
cuvettes and positioned inside the UV spectrometer (Figure 4.5) [71]. One cuvette was used as 
the reference and contained the solvent in which the solute was dissolved, whereas the second 
was filled with a sample. The sample was prepared by dissolving the food additive into distillate 
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water. The acquired spectra were used for training, testing and validating the machine learning 
algorithms. To be able to classify the spectra, more than one spectrum of each additive was 
necessary. Therefore, several samples with different molarities were prepared for each 
additive. Table 4.2 shows the molar concentrations ranges for the five additives.  

Table 4.2 Molar concentrations [6] 

Food additive Minimum molar 
concentration [M] 

Maximum molar 
concentration [M] 

Acesulfame potassium 0.0000937 0.000625 

Aspartame 0.00175 0.01 

Sodium benzoate 0.0000137 0.0005 

Potassium sorbate 0.00000312 0.000195 

Saccharin 0.000292 0.00225 

In Figure 4.6 (a) the maximum absorbance peak has a value of 1.4 A.U (absorbance units) 
and corresponds to a solution with a molar concentration of 0.000156 M. The absorbance value 
decreased for solutions with lower molar concentrations (0.0000781 M and 0.0000390 M) 
confirming the Beer-Bouguer-Lambert Law. The spectra of the five additives were different by 
shape, number of absorbance peaks and the wavelength where the peaks were located. 
Therefore, the additives could be identified and classified based on the UV spectra.   

The feature extraction was necessary in order to classify the spectra using machine 
learning algorithms. Therefore, spectral parameters were automatically calculated based on 
the acquired spectra. Figure 4.7 shows four of the parameters calculated using the spectra. 
These parameters are: FWHM (full width half maximum), λP (wavelength where the maximum 
absorbance peak appears), λL and λR (wavelength where the absorbance is half of the maximum 
absorbance peak). The FWHM parameter can be calculated as the difference between the 
wavelength for half of the maximum absorbance value). The Skewness parameter and the 
difference between λP și λL, respectivelly between λR și λC were also determined in order to 
establish if the spectra were symmetrical. Other parameters were Kurtosis and the relative 
errors of the following parameters λP, λL, λR și FWHM. Table 4.3 presents some of the 
parameters determined for five solution different additives.  

 

(a)      (b) 
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(c)      (d) 

 
(e) 

 
Figure 4.6 Spectra representation (a)  for acesulfame potassium molarities; (b) for sodium benzoate molarities; 

(c) for potassium sorbate molarities; (d) for saccharin molarities; (e) for aspartame molarities [6] 

Table 4.3 Spectral parameters for a sample of each additive 

Parameters Acesulfame 
potassium 

Aspartame Sodium 
benzoate 

Potassium 
sorbate 

Saccharin 

Molar concentration [M]  0.000375 0.007 0.00025 0.00225 0.00225 

Maximum absorbance [A.U] 3.494 1.629 1.673 3.392 2.929 

λC [nm] 226.6 257.4 224 253.9 269.6 

λL [nm] 207.7 242.8 211.2 232.1 244.3 

λR [nm] 247 266.1 237 271.9 286.5 

FWHM [nm] 39.3 23.3 25.8 39.8 42.2 

Fifteen spectra were acquired for each of the five additives. For all seventy-five spectra 
the mentioned parameters were calculated. The data was used to train and test three machine 
learning techniques. The database was divided into two datasets: 80% was allocated into the 
training dataset, whereas the remaining 15 spectra were used to calculate the accuracy of the 
classification for testing.   

The first technique used for the spectra classification was SVM. Each additive was given 
a numerical value, which appeared also in the confusion matrixes. The codification was the 
following:  1 for acesulfame potassium, 2 for aspartame, 3 for sodium benzoate, 4 for potassium 
sorbate and 5 for saccharin. Figure 4.8 (a) shows the classification results grouped within a 
confusion matrix. Horizontally are displayed the real classes of the solutions, whereas vertically 
are placed the predicted classes. The values within the diagonal indicate that all the samples 
were correctly identified by the techniques.  
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Figure 4.7 Spectral parameters  

The second machine learning technique that was tested was tested was k-NN. The 
confusion matrix for this technique is illustrated in Figure 4.8 (b). The fifteen recordings were 
correctly identified with this technique too, the testing accuracy being 100%. Lastly, decision 
trees were used for the spectra classification. The confusion matrix within Figure 4.8 (c) shows 
that one sample from class 1 (acesulfame potassium) was incorrectly classified as a sample 
from class 3 (sodium benzoate). The analysis has shown that the most relevant parameters 
used in the classification of the data are λL, the relative error for λL, λC and Kurtosis.  

 

    (a)               (b) 

 

(c) 

Figure 4.8 Confusion matrix (a) SVM algorithm; (b) kNN algorithm; (c) decision tree algorithm (d) classification 
results for validation 

The mean testing classification accuracy was calculated by repeating the classification 
process ten times. The data was randomly divided into two datasets. The results showed that 
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SVM and k-NN methods were capable of correctly identifying all the samples obtaining 100% 
accuracy, whereas with decision trees the mean accuracy was 99.33% ± 2.1 %.  

A validation model was created for each technique. To determine the validation accuracy 
of the models an additional dataset containing fifteen recordings was used. The dataset 
contained the spectra of two acesulfame potassium, 2 aspartame, 2 sodium benzoate, 5 
potassium sorbat and 4 saccharin samples. The results are presented in Figure 4.8 (d). The 
validation database contained few spectra; therefore, the algorithms were able to identify all 
the spectra correctly.   

4.2.3 Deep learning techniques for food additive classification 

The study of food additives was continued in chapter 6. It was desired to enlarge the 
spectra database for all five additives and also acquire and analyze the spectra of mixtures 
between two additives. There may be more additives within a sample; therefore, the goal was 
to assess if the spectra of mixed solutions (containing two additives) present the absorbance 
peaks of both additives, if the peaks overlapped and if the spectra of mixtures could be 
classified.  

The molar concentration range of the simple solutions was extended, new molar 
concentrations were prepared and analyzed with the UV spectrometer. The final database for 
pure solutions was enlarged from 75 to 193 spectra. The study was continued with the 
preparation of mixed solutions. Simple solutions were prepared and 2 ml from each sample was 
mixed into a clean Berzelius glass. To obtain more spectra for the same mixture, but with 
different absorbance values, the solutions were diluted by adding 1.5 ml of distillate water with 
1.5 ml of the sample. With the five additives ten mixed solutions were prepared and analyzed 
[6].  

In Figure 4.6 (a) and (c) was shown that the absorbance peak of acesulfame potassium 
is located at 226 nm and at 254 nm for solutions of potassium sorbate. Figure 4.9 (a) depicts 
the spectra of three samples: the first spectrum corresponds to an acesulfame potassium 
solution of 0.00005 M; the second contains 0.0000156 M potassium sorbate, whereas the third 
sample is a mixture of acesulfame potassium and potassium sorbate. The molar concentration 
of the sample is 0.0000585 M acesulfame potassium and 0.0000219 M potassium sorbate. The 
mixture’s spectrum shows the absorbance peak for potassium sorbate (at 254 nm) and the one 
for acesulfame potassium (at 226 nm) [6].   

  

(a)        (b) 

Figure 4.9 Additive spectra (a) A. Acesulfame potassium; B. Potassium sorbate; C. Mixture of acesulfame 
potassium and potassium sorbate; (b) A. Sodium benzoate; B. Potassium sorbate; C. Mixture of sodium benzoate 

and potassium sorbate [6] 

Figure 4.9 (b) presents the spectrum of a mixture of sodium benzoate and potassium 
sorbate. The spectrum contains both absorbance peaks, which indicate the presence of both 



16 
 

additives within the sample. The peaks associated with sodium benzoate are located at 224 nm 
and 194 nm, whereas the one for potassium sorbate is visible at 254 nm [6]. Similar results 
were obtained for the other eight mixtures. The mixture database contained 211 spectra 

The significant growth of the spectra database (404 spectra, 193 for pure solutions and 
211 for mixtures of two additives) allowed the use of neural networks instead of the machine 
learning techniques for the sample classification. Two types of neural networks were used: 
artificial neural networks and convolutional neural networks. Figure 4.10 shows the 
architecture of the ANN with one hidden layer and with two hidden layers. The accuracy of the 
two architectures was compared.   

The classification of the spectra was also done with CNN with 1, 2 and 3 convolutional 
layers (followed or not by pooling layers). The architecture of the CNN with three convolutional 
layers followed by pooling layers is illustrated in Figure 4.11. These networks were used for the 
classification of pure samples, mixture and for all the samples. Each algorithm was used ten 
times to calculate the mean testing/validation accuracy. For each classification, the data was 
randomly divided into datasets.  

Table 4.4 presents the best accuracy results obtained by classifying the samples with the 
eight networks. The results show that CNN architectures can correctly identify more spectra 
and as a result have higher accuracy values (over 90%) compared to ANN [6]. An analysis of 
variance (ANOVA) was also performed for the accuracy datasets to determine if there is a 
statistical difference between performances of the networks. The results of the one-way ANOVA 
have also highlighted that CNN are more prone to obtain better classification results than ANN 
[6].  

 

Figure 4.10 ANN architecture [6] 

 

Figure 4.11 CNN architecture [6] 
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Table 4.4 The accuracy of the models [6] 

Dataset Neural 
Network 

Stage Mean Accuracy 
[%] 

Standard 
deviation [%] 

Pure solutions CNN2* Testing 99.67 1.02 
Validation 99.67 1.02 

Mixtures CNN1* Testing 91.94 4.02 
Validation 94.16 3.05 

All samples  CNN3 Testing 92.38 1.48 
Validation 93.43 2.01 

CNN2* - CNN with 2 convolutional layers and pooling layers 
CNN1* - CNN with 1 convolutional layers and 1 pooling layer 
CNN3* – CNN with 3 convolutional layers and 2 pooling layers 

The results of this study showed that the classification of food additive can be done using 
UV spectroscopy and neural networks. A research paper utilized BP-ANN (back-propagation 
neural network algorithm) and PLS (partial least squares) for the analysis of the UV spectra of 
two food additives (sodium benzoate and potassium sorbate) [72]. These techniques were able 
to identify the two additives within simple solutions, within mixtures but also in real samples. 
This study has focused on the classification of the spectra of five additive, from two different 
classes (sweeteners and preservatives) and has also included the classification of ten different 
mixed solutions (two-additive solutions). This study has not assessed real samples, but the aim 
is to continue the research by acquiring the spectra of mixtures of three, four and even five 
additives. The addition of new food additives would also help in the analysis of real samples, 
because there may be samples that contain certain additives (which might not be included in 
this study) and without knowing the spectra they would be hard to identify.  

 

4.2.4 Holographic sensors for acetic acid and ethyl alcohol detection  

The analysis of food additives was continued in chapter 7 by using holographic sensors. 
To record the holograms, it was desired to use a commercial photopolymer to reduce the 
preparation time. The disadvantage of using a commercial photopolymer is not knowing to 
which substances it may be sensitive or not. It was necessary to test the hologram with various 
analytes to determine which determine an optical response.  

The holograms were recorded in a commercial photopolymer called Bayfol HX200 [73], 
[74]. Figure 4.12 and Figure 4.13 illustrate the setup used to record the holograms. The 
wavelength of the LASER is 532 nm. The photosensitive material was attached to a microscope 
slide to avoid its movement during the recording. On a single microscope slide, three holograms 
were recorded, as can be seen in  Figure 4.14.  

 
 

Figure 4.12 Recording setup (M1, M2, M3 - mirrors, ES – electronic shutter, SF – spatial filter, CL – collimating lens, 
P – photopolymer, 1 – reference wave, 2 – object wave)1 [75] 
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The recorded holograms were meant for the detection of food additives. The 
holographic sensors are sensitive to one or more additives if there is a displacement of the 
diffracted spectrum. Therefore, the spectrum needed to be monitored. Figure 4.15 (a) visually 
explains the wavelength displacement of the diffracted spectrum, whereas Figure 4.15 (a) 
shows the monitoring setup used for the holograms. The main components are a white light 
source, the cuvette with the sample, the holographic sensors (that is attached to one of the walls 
of the cuvette) and the spectrophotometer.   

 

Figure 4.13 Real recoding setup (M1, M2, M3 - mirrors, ES – electronic shutter, SF – spatial filter, CL – collimating 
lens, P – photopolymer) [75] 

 

 
Figure 4.14 Microscope slide with three holograms 

 

   (a)      (b) 

Figure 4.15 (a) Wavelength displacement of the diffracted spectrum (λi – initial wavelength; λf– final wavelength; 
Δλ - wavelength displacement); (b) Wavelength displacement monitoring setup (L -tungsten halogen lamp; 1 – 

microscope slide with hologram;   2 – cuvette; 3 – cuvette support; S – spectrophotometer)1 [75] 

The holograms were tested with various food additives. In literature, holographic 
sensors were used for pH detection [37], [38]. Therefore, it was important to test if the 
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holographic sensors recorded on Bayfol could be used to determine the pH of a sample. The 
holograms were also tested with acid and bases (strong and weak) and with a type of alcohol.  

The holograms were tested with sulfuric acid (strong acid), with citric acid, acetic acid 
and ascorbic acid), with sodium hydroxide (strong base), sodium bicarbonate (weak base) and 
ethanol (alcohol). Solutions with various concentrations were prepared and the wavelength 
displacement was monitored for 5 minutes. The results showed that there is no displacement 
of the diffracted spectrum for ascorbic acid, citric acid, sulfuric acid and for the two bases. 
Therefore, it was proven that these sensors cannot detect pH.  

The results obtained for the ethanol and acetic acid solutions have shown that there is a 
dependence between the concentration of the samples and the wavelength displacement of the 
diffracted spectrum. Figure 4.16 shows the wavelength displacement for two acetic acid 
solutions. In the left part of the image was placed the wavelength displacement obtained for 
each solution. The sample with a molarity of 0.5 M had a wavelength displacement of 3.61 nm, 
whereas for the second (0.7 M) the displacement has grown to 4.7 nm. 

 

Figure 4.16 Experimental results for acetic acid solutions 1[75] 

Figure 4.16 shows the wavelength displacement for the two samples of ethanol with 
concentrations of 50% (v/v) and 80% (v/v). Comparing the figures, it can be observed that the 
ethanol sample with lower concentration has a smaller wavelength displacement than the 
sample with 80% (v/v). More samples were prepared using ethanol and acetic acid. The ethanol 
concentration varied between 0-100% (v/v), whereas the ones for acetic acid varied between 
0.004 M and 4 M. 

 

 

Figure 4.17 Experimental results for ethanol solutions 50% (v/v) and 80% (v/v)1 [75] 
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The acetic acid measurements showed a growth in the wavelength displacement for 
molar concentration higher than 0.09 M after 5 minutes of analysis. For smaller concentrations 
of acetic acid, the response of the sensors fluctuated. The ethanol measurements showed a rise 
in the wavelength displacement for all concentration. The results obtained in Figure 4.16 show 
that the maximum displacement was obtained after 5 minutes for solutions of acetic acid. For 
ethyl alcohol samples, Figure 4.17, the maximum displacement is obtained after 1 minute for 
concentrations lower than 70% (v/v) and 30 seconds for higher concentrations.  

Figure 4.18 (a) and (b) show the fitting curve obtained by representing the wavelength 
displacement and the molar concentration of the analyzed samples. The acetic acid results show 
that the two parameters depend according to a quadratic equation, y = 0.3795 x2 + 6.517x + 
2.692, whereas for the ethanol samples, with concentration higher than 70%, the equation is     
y = 0.01014 x2 + 0.5881x + 0.3587.  

 

 
 

(a)                                                                                             (b) 

Figure 4.18 Fitting curve (a) for acetic acid; (b) for ethanol1 [75] 

In this study the concentration of acetic and ethyl alcohol samples was determined using 
holographic sensors recorded on a commercial photopolymer. The response time was 5 
minutes for solutions of acetic acid and 1 minute for ethyl alcohol solution with concentrations 
lower than 70% (v/v). No holographic sensors for acetic acid detection were found in literature, 
but various methods (used for the analysis of acetic acid solutions) had response times varying 
from few seconds to minutes [76], [77]. Holographic sensor for ethanol detection responded to 
the presence of the analyte in 50 seconds for concentrations of 10% (v/v) [41], which is a very 
similar result compared to the one obtained in this study with the commercial photopolymer. 
Comparing the performance of these sensors with the ones obtained with other holographic 
sensors (which detect other substances and have response time up to 20 minutes [78]) it can 
be said that these sensors have a fast response time to the analytes.  

5. Conclusions 

This thesis has focus on the study of optical sensors and advanced methods that use light 
radiation for the analysis of drinks and food additives. The analysis methods based on light 
radiation for probe characterization are extremely used at the moment. This is confirmed by 
the large number of articles published in the last years using the following techniques: UV 
spectroscopy [21], [43], [79], infrared spectroscopy [59], [80], [81], fluorescence spectroscopy 
[82]–[84], interferometry [24], [85]–[88] and colorimetry [89].  
 In chapter 1 a theoretical study was realized to better understand how optical sensors 
and analysis methods function. The study was concluded by identifying applications where 
optical sensors or optical analysis methods were used [16], [82], [90], [91].  
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In chapter 2 machine learning and deep learning methods were discussed. Three 
machine learning algorithms were briefly discussed (k-NN, SVM, decision tree) followed by the 
presentation of the architecture of artificial and convolutional neural networks [52], [53].  
These techniques were also used with optical analysis methods[58], [59].  

Chapter 3 includes a short introduction on the thesis thematic, highlighting the main 
objectives. Chapters 4-7 include the four-research direction that were studied during the PhD 
period: milk and juices analysis using low-cost optical devices; the classification of pure 
solutions of food additives using machine learning techniques; the classification of pure and 
mixed solutions of food additives using neural networks; acetic acid and ethanol detection 
using holographic sensor recorded on commercial photopolymer. Lastly, chapter 8 presents 
the thesis conclusions and the personal contributions.  

6. Personal contributions 

• Testing experimental setups based on low optical devices.  
• Analyzing milk and juice samples using low-cost experimental setups.  
• Feature extraction for the UV spectra of five food additives (aspartame, acesulfame 

potassium, saccharin, sodium benzoate and potassium sorbate). 
• Classification of the UV spectra (simple solutions of aspartame, acesulfame potassium, 

saccharin, sodium benzoate and potassium sorbate) using machine learning techniques.  
• Spectra acquisition for 5 food additives: aspartame, acesulfame potassium, saccharine, 

sodium benzoate and potassium sorbate, obtaining a total of 193 UV spectra.  
• Spectra acquisition for mixtures of two additives (211 UV spectra for mixtures)  
• Study and testing of artificial neural network with one and two hidden layers for the 

classification of the UV spectra of food additives.1 
• Study and testing of convolutional neural network with one, two and three convolutional 

layers (preceded or not by pooling layers) for the classification of the UV spectra of food 
additives.    

• The determination of the chemical species that inflict a wavelength displacement of the 
diffracted spectra in the holographic sensors recorded on a commercial photopolymer. 

• The usage of a holographic sensor recorded on commercial photopolymer for the 
detection of acetic acid concentrations. 

• The usage of a holographic sensor recorded on commercial photopolymer for the 
detection of ethyl alcohol concentrations.  

• Testing holographic sensors recorded on commercial with various bases and acids to 
determine if the sensors are sensitive to pH (non-responsive to pH variations). 

• Obtaining a dependency between the optical response of the holographic sensors 
recorded on a commercial photopolymer and the concentration of the samples. 

• Obtaining a holographic sensor with fast response to analyte presence (5 minutes for 

acetic acid samples and 1 minute for ethanol concentration between 5% and 70% (v/v), 
respectively, 30 second for higher concentrations of ethanol.   

 
1The figures are based on the results obtained in: I-A. Potărniche, J. Marín-Sáez, M.-V. Collados, J. Atencia, "Holographic 

sensor based on Bayfol® commercial photopolymer for ethanol and acetic acid detection", which at the moment of 

submission of this resume (September 2023) was under review at the journal "Optics and Laser Technology".   
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