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1. Introduction

The amount of malicious software, shortly known as malware, is continuously rising,
alongside the diversity and complexity of malware. Statistics provided by AV-Test Institute
[Insal] indicate that the total number of malware in 2020 was over 1.1 billion samples. A
steep growth in the number of malicious files that began in 2012 represents the moment
when the traditional, signature-based security solutions started to struggle and the need
for more advanced behavior-based technologies has arisen.

The types of risks to which both individual users and organizations are exposed
range from data loss to identity theft and financial loss. As malicious software has
become the foundation of a highly profitable industry [BBC, [McG18], malware authors
are continuously trying to find new and more sophisticated methods to avoid detection
[K720, MD18]. All these indicate there is a real need for innovation and the development
of efficient and proactive security solutions. Behavior-based dynamic malware detection is
the most proactive detection method.

This thesis aims to improve dynamic malware detection by proposing solutions to
some of the most important challenges faced in this field. The thesis focuses on developing
a proactive behavioral malware detection solution that dynamically monitors the behavior
of processes, uses advanced behavioral heuristics to identify malicious actions and evaluates
the behavior of processes. The proposed security technology should be capable of detecting
new and previously unknown threats and should be suitable for real-time protection.
In addition, the solution aims to be resilient to evasion, when a malware’s payload is
distributed among multiple processes and should also have a small overall performance
overhead and a short response time to new threats.

One of the challenges in dynamic malware detection is the fact that a single action
is usually insufficient to distinguish between malware and clean applications, and taking
multiple actions into account is necessary to achieve a better accuracy. In addition,
not all malicious actions can be considered equally significant. Some have more severe
consequences, while others with minor immediate consequences, may indicate the malicious
nature of process when performed together with other actions. An incorrect behavioral
evaluation may result in too many false positives or poor detection.

Another challenge comes from the way dynamic detection solutions evaluate threats.
Currently, most of dynamic malware detection techniques evaluate the behavior of a process
and, using a set of rules, decide if that process is malicious or not. The rule set must
accurately differentiate between malicious and non-malicious processes. Because a balance
between detection rate and number of false positives must be assured, a dynamic detection
system can not be too aggressive when evaluating a single process. Advanced malware
may take advantage of this lack of aggression and evade being detected by separating
malicious actions into multiple processes through process creation or code injection.

The third challenge in dynamic malware detection addressed by this thesis is the
performance overhead. Monitoring the behavior of processes dynamically, at run-time,
by installing filters (such as file system, registry, process and APIs filters) implies certain
costs in terms of performance. More often than not, behavioral detection solutions have
been a source of frustration for users, even if they provide a higher level of protection
than traditional, signature-based ones. Considering this, it is very important to find ways
of improving the performance of behavior based malware detection solutions, and at the
same time to maintain the detection rate at the same level, which is a significant challenge.



The fourth improvement to dynamic malware detection proposed by this thesis
addresses the response time to new, undetected threats. With some effort, experienced
malware developers can be one step ahead of security researchers. They can test their
malicious software against security solutions and adapt the malware until it evades detection.
Considering this, advanced security solutions should be both proactive, so that they can
generically detect new malware samples with known malicious behavior, as well as reactive,
so that detection for new malicious behavior can be added as soon as possible. When a
malware with an undetected behavior is released, users are vulnerable to attacks until their
security product is updated with heuristics capable of detecting that malicious behavior.
This time gap can be lengthy in some cases, because of all the steps in the development
process of a security solution, which include careful development, rigorous testing and that
certain certifications are obtained before an update can finally be deployed to users.

1.1 Thesis Outline

The thesis is organized into eight chapters. The first chapter presents the motivation
for this research. The second chapter describes the concepts and definitions used throughout
the thesis, specific to the malware detection domain. Chapter 3 presents existing research
regarding malware detection.

Chapter 4 starts with an overview of the proposed solution’s architecture and a
description of the components, then highlights the advantages of the scoring engine over
artificial intelligence algorithms. The chapter describes the key elements identified that
are needed to obtain an advanced scoring engine and presents the evaluation process. The
chapter explains how the detection model can be extended and maintained in response
to the continuously evolving threats. The malware detection and false positives rates
obtained by evaluating the solution are also presented, highlighting the contribution of the
key elements of the scoring engine to the malware detection rate.

Chapter 5 presents a method to detect malicious groups of processes instead of
single malicious processes, a method for constructing such groups, together with a way to
evaluate their actions so that malware groups can be detected. A method to clean the
infected system based on the actions performed by the processes in the detected group is
also presented.

Chapter 6 describes two key methods proposed by this thesis to improve the
performance of a behavior based detection solution: asynchronous heuristics and a dynamic
reputation system. Asynchronous heuristics help reduce the overhead perceived by the user,
while a dynamic reputation system helps reduce the system-wide resource consumption.

Chapter 7 presents the solution proposed by this thesis to reduce the time to
market of a behavioral detection solution and improve it’s reactivity. We propose using
an interpreter virtual machine, called Behavioral Virtual Machine (BVM), that interprets
behavioral heuristics stored as bytecode signatures. This solution allows researchers to
rapidly add new detection algorithms (heuristics), having the advantage of deploying them
to users as a signature update. In addition to improving the reactivity of the security
solution, BVM also provides a way to quickly create prototypes for new ideas of heuristics.

Chapter 8 presents the conclusions of this thesis and highlights the main contribu-
tions to the field of dynamic malware detection.



2. Proposed Solutions

2.1 Dynamic Behavior Evaluation for Malware Detection

We propose a set of dynamic behavior evaluation concepts, valuable to any security
researcher who wants to develop an advanced evaluation mechanism for a behavior-based
security solution with high detection accuracy. Furthermore, these concepts were used
to implement such a solution. The solution was evaluated, with results indicating a high
detection rate and few false positives. It is also capable of identifying relations between
various entities resulting in a panoramic perspective of the protected system. Moreover,
the architecture is simple and easy to adapt or extend to detect the newest threats.

The high-level architecture of the proposed solution is illustrated in Figure 2.1l The
solution can be controlled and configured using the Security Application Service - the user
can change the settings, add exclusions and make decisions regarding the detection. For
example, the user can decide between allowing a detected process to run or to block it. In
addition, through this component the security solution may send telemetry to a server or
make queries to a Cloud component for various services (e.g. hash based whitelisting).

Monitored Process la

User Mode )
[DLL} [WinOWS DLL Filtering and Security Application
Heuristics [ Service }
~

User Mode (ring 3)

Kernel Mode (ring 0) Minifilter Driver \
Kernel Mode

Wielogss OF SN Filtering and Evaluation Unit ’
Kernel ot
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Figure 2.1: Behavioral Detection Solution Architecture

A minifilter driver was implemented to monitor the actions performed by processes
from Kernel-Mode. It registers callback routines, that are called whenever an event occurs
in the file system, registry keys or processes. The actions performed by processes are also
filtered at User Mode level, using API interception (hooking) through a Dynamic Link
Library (DLL) injection into the monitored process. Whenever the filter components
intercept an action, the filtered information is dispatched to the heuristics. They will
process the intercepted information and send alerts to the Fvaluation Unit, if necessary.

All the alerts triggered by the heuristics are received by the Evaluation Unit, which
processes the alerts and the associated scores. If the Evaluation Unit determines that a
process should be detected, a notification is sent to the the Security Application Service
component, in order to display a notification in the user interface.

The proactive security solution is based on behavioral heuristics. They are located
in the same components as the filtering mechanisms, as shown in Figure[2.1] Each heuristic
is an algorithm (function) that analyzes the actions intercepted through monitoring. More
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precisely, they are called whenever a targeted event occurs, process the information related
to that event and decide if a targeted action is being performed. If such an action is
identified, the heuristic triggers an alert (i.e. the heuristic is triggered). Each alert has
an associated score and is sent to the evaluation unit. Examples of actions that can be
detected using heuristics include creating a copy of the original file, hiding a file, injecting
code into another process, creating a startup registry key, deactivating some critical OS
functionalities (e.g. updates) or terminating critical processes. The solution can be very
easily extended with new heuristics, without affecting the existing ones.

2.1.1 The Evaluation Unit

The evaluation unit (scoring engine) represents a series of algorithms and operations
applied on information resulting from heuristic alerts, in order to evaluate the behavior of
processes. These operations were identified over time, as a result of practical experience in
behavioral based malware detection (over 10 years).

We propose using an incremental scoring engine, that evaluates alerts issued by
the heuristics. Each heuristic sets a different score, representing an integer value. The
scoring engine computes a general score for the process and compares it to a detection
threshold. If this score reaches that threshold, the process will be declared malicious. The
threshold’s value is adjustable between three levels of aggressiveness, to accommodate the
user’s preferences: better detection or fewer False Positives (FPs).

False positives are a big concern when developing a security solution intended for
millions of users. To mitigate against this issue, we propose an exception mechanism to
allow a process to execute a certain action, that would otherwise be detected by one of
the heuristics. More precisely, the points that would have been given by that heuristic are
either set to 0, or are lowered with a certain percentage.

Malware that delegate some of their payload to one or multiple child processes
can be harder to detect because some heuristics are triggered on the parent process and
some on the child entities. This increases the risk that the malware attack will remain
undetected. In some cases, one of the child processes is detected, but this may not be
enough to clean the system, if the parent process remains undetected. Another similar
method is when malicious code is injected into a process.

To detect malware that use similar evasion mechanisms, we introduce the concept
of parent process heuristic propagation, meaning that all the malicious actions performed
by the child processes are propagated to the parent process. This consists of propagating
all the heuristics and the associated points to the parent process entity. The points can be
propagated fully or only in part, representing a percentage of the total. This percentage
or propagation weight depends on the heuristic and on the type of the involved processes.
Similarly, we introduce injected process propagation, when heuristics are propagated from
the injected entity to the injector process.

Based on the previous remarks regarding the incremental score, heuristic exceptions,
parent and injected process propagation, the total score of a process is computed as shown
in Equation (2.I). Nj, denotes the number of triggered heuristics and H;(P) the score
given by the i-th heuristic for the process P. E(P, H;) denotes the exception weight for
the i-th triggered heuristic and may be considered as a function of the evaluated process
P and the heuristic H;, with E(P, H;) € [0,1]. N and Ny, represent the number of
heuristics propagated from the child processes and injected processes. P denotes the child
process or the injection victim from which heuristic H} is propagated to the process P.
The propagation weight is denoted as W, with W € [0, 1].
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Np Nen+Nip

S(P)=>_E(P,H)H,(P)+ Y  W(P,P,H)EP,H)H (P) . (21)

To correctly compute the score of processes using propagation, the scoring mechanism
must maintain a process collection, that acts like a database, storing information about
the monitored processes and the relations between them. These relations will be used for
score evaluation. We propose an algorithm for creating and maintaining such a collection.

2.1.1.1 Flags for Heuristics and Processes

A scoring engine integrated in a solution used at a large scale should be very
adaptable. We propose using exception and propagation weights that will allow us to
increase the detection rate and reduce the number of FPs. The weights may be seen as
functions of process and heuristic attributes, called flags. Each process or heuristic can
have none, one or multiple flags set at a certain moment.

Such flags are useful for a better calibration of the scoring engine. For example,
a process can be marked with the flag TypelsBrowser. Then, it can be excepted from
heuristics that have a flag indicating they detect the access of URLs or the download of
files. This way FPs on browsers, that commonly perform such actions, can be avoided.
However, in addition to the TypelsBrowser flag, the process may have a flag indicating it
is an injection victim (FlaglsInjected) or that it is being exploited (FlaglsEzploited). In
this case, the previous exception may not be taken into consideration, allowing a better
detection by not excepting a formerly clean process that was compromised through a code
injection or an exploit of a vulnerability.

2.1.1.2 Process Re-evaluation Rules

Heuristics and flags can be combined in re-evaluation rules. If one of the rules
matches, it will trigger another heuristic with an associated score. This method can
significantly improve the detection rate, especially if the initial heuristics and flags may
not indicate that the process is malicious per se, but do when regarded as a whole. Such
rules can be easily written in signature files, as presented in the following example.

Flag2 // flag2 must be set

'Flag8 // flag8 must NOT be set
Heur24 // Heur24 must be triggered
'Heur71 // Heur7l must NOT be triggered

Trigger: Heurl49 // will trigger Heurl49
Points: 35 // with 35 points

Listing 2.1: Example of re-evaluation rule

2.1.2 Extending and Maintaining the Detection Model

Malicious software is continuously evolving in order to use the latest features
provided by operating systems and programming languages, as well as to exploit the latest
unpatched (zero-day) vulnerabilities. If the current detection model does not identify a new
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malicious technique, the current model must be extended, usually by implementing new
heuristics. The detection model also needs to be updated because of the clean applications.
With new releases and updates being performed everyday, there is a chance that clean
applications will exhibit new behaviors that can generate additional false positives. On
the other side, once identified by heuristics, such new behavior can help the detection
model to better differentiate clean applications from malicious software. All these reasons
emphasize the need for a detection model that is easy to maintain and extend.

We presented how to identify actions that can be monitored and how to implement
new heuristics to analyze those actions. We exemplified this process on a sample from the
backdoor trojan malware family.

2.1.2.1 Telemetry Mechanism

The telemetry mechanism is the most important aspect in the process of extending
and maintaining the detection model. New heuristics and their scores are fine tuned in lab
before they are released, until the expected detection and false positive rates are reached.
However, in lab testing barely covers a small fraction of the real world scenarios, so the
telemetry mechanism is needed to be able to evaluate the detection in the real world.

The telemetry mechanism is enabled only with the user’s consent. Every time a
detection occurs, it generates an anonymized telemetry file and uploads it to a cloud service.
A telemetry file can contain valuable information about the detected process and also
about the system and context in which the detection was triggered. Automated systems
or security researchers classify the telemetry into true positive (TP) or false positive (FP).

Each new heuristic is initially released to the real world in a testing, telemetry-only
phase (beta). The telemetry of beta heuristics is processed and if the resulted statistics
are as expected, the beta marker is removed. If the telemetry statistics contains too many
false positives or too few detected malware, the beta heuristic is adjusted and updated for
as many times as needed.

2.1.2.2 Measuring the Precision and Performance of Heuristics

Continuously evaluating and improving the quality of the heuristics and the detection
model is a critical aspect for a security solution. This requires measuring the precision
of heuristics. The precision is defined as the number of TP cases divided by the total
number of cases (TP + FP). Using the telemetry files, the precision for each heuristic can
be computed for a certain evaluation interval.

All the telemetry files are processed and classified into FP or TP cases. After this
operation is done for each heuristic, a table containing the total number of cases, the
number of TP and FP cases and the Precision of each heuristic is generated. This table
can be sorted in decreasing order by Precision and obtain the heuristics with the best
TP /Cases ratio, as well as underperforming heuristics that need adjustments.

When an application is monitored, the normal flow of the code execution is hijacked.
For each filtered action, instead of running only the application’s code on the CPU, the
code of the heuristics is executed as well. This translates into a certain performance
overhead caused by each heuristic. The time spent during each heuristic’s execution can
be determined by obtaining the time immediately before calling the heuristic’s callback
and the time at the return from the callback.

These measurements are conducted multiple times in various real world usage
scenarios. For each heuristic some statistics are saved. Because these scenarios are complex
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a heuristic can be called multiple times, so the number of entries in the heuristic’s callback
is counted. The minimum time, the maximum time and the average time spent in the
callback are computed. In addition, the average overhead for a heuristic is computed as
the product between the number of entries and the average time spent in the heuristic’s
callback. Using these statistics, the performance overhead of heuristics can be evaluated.

2.1.2.3 Adjusting the Heuristic’s Points

The detection rate of a heuristic can be improved simply by adjusting it’s number
of points. This strategy is supported by the fact the scoring mechanism is really flexible
and easy to adapt. The score of any heuristic can be easily changed or can be fine tuned
for certain types of processes, without having to change the code, only by adjusting some
weights. Identifying how a heuristic’s points should be adjusted can usually be done by
analyzing the telemetry statistics. For example, the initial assessment for a heuristic
performed in the laboratory indicated that it should set 7 points for an alert. Based on
the telemetry from real world users, the heuristic was classified as under-performing. The
statistic shows how the number of FP and TP change if the heuristic’s points are adjusted
to a certain value. The results of such an analysis are illustrated in Figure
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Figure 2.2: False Positive Reduction vs False Negative Increase of a Heuristic

The key idea when analyzing such charts is to search for points on the horizontal
axis where the distance between the blue line (FP Solved %) and the red line (Detection
Loss %) is the biggest, especially in relation with the neighboring points, and also the red
line is reasonably low. Of course there are situations in which such points do not exist.
This means that there is not a case of adjusting the points, instead the heuristic may need
an adjustment of its logic, because it is not malware specific.

The precision of a heuristic can be easily improved using the points adjustment
method. For the previous example the heuristic had a precision of 74.35% when it set 7
points. By reducing the amount of points to 3 there is a gain of over 22% in precision
increase, to a total of 96.55%.



2.1.2.4 Adding Re-evaluation Rules and Flag Induced Exceptions

Using telemetry statistics, decision trees like the one presented in the Figure [2.3
can be created. The statistic was generated for telemetry containing Heur( heuristic, as
illustrated in the root node. The telemetry files were classified into two classes: TP and
FP. The next step was to search for the most discriminant feature (heuristic or flag) that is
mostly present in one of the classes and almost absent in the other one. At first iteration
this was the Heurl heuristic, which was found in 78.16% of the FP cases and in 16.51% of
the TP cases. The search of discriminant features continues for each branch of the decision
tree until one of the classes reaches 0% or there are no more features to make a significant
difference between the classes.
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Figure 2.3: Decision Tree for Combining Heuristics and Flags
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After the decision tree is generated, a security researcher can analyze it and search
for nodes that have one of the percentages significantly high and the other one close to 0.
New re-evaluation rules can be created to increase detection (based on the red nodes) and
to lower false positives by adding exceptions for processes that have a certain combination
of heuristics and flags (based on the green nodes).

2.1.3 Experimental Results

We performed detection and false positives tests to evaluate the security solution.
The solution used for testing consists of 267 heuristics, 59 re-evaluation rules, 48 heuristic
and 71 process flags. The results of the detection and false positives test are presented in
Table 2.1} These results indicate that the security solution has a good detection rate and
a very small number of FPs. However, using the exception mechanism the FP rate can be
theoretically kept very close to zero.

We were also interested to evaluate the solution by comparing it to other detection
mechanisms that make use of a scoring engine. Based on the description provided by



Table 2.1: Malware and false positives detection test results
Total Files | Not detected | Detected | Detetion rate
Malicious 17069 2120 14949 87.57%
Clean 23792 23758 34 0.14%

Agarwal et al.[ASJT16] and Treadwell et al. [TZ11] we compared several properties of
these systems with our proposed solution. In contrast to the other solutions, our proposed
scoring engine has higher user adaptability, is more advanced than the other two systems
because it is based on behavioral characteristics, it targets diverse malicious behaviors, it
is less susceptible to evasion mechanisms [MDL™12] and has a designated mechanism to
mitigate against FPs. Also, the proposed solution can be extended with new heuristics
without needing to alter the scores associated to other heuristics or the threshold.

2.2 Evasive Malware Detection using Groups of Processes

A strategy used by malware to avoid dynamic detection is to distribute their payload
into multiple processes. Due to the large number of processes used by some malware
samples and because the process trees for these samples are complex, with multiple levels
and branches, correlating process scores using propagation can be difficult and less effective.

We propose a new strategy to track the actions performed by multi-process malware
and evaluate their behavior. This strategy is based on creating groups of related processes,
by dividing the processes into creators and inheritors. We present the way groups
are influenced by process creation and code injection events and introduce group-based
behavioral heuristics. We describe how the behavior of processes and groups is evaluated
and how remediation can be performed on the detected entities.

A major contribution of our solution is that it automatically correlates the behavior
of individual processes within a group, thus eliminating the need for a distinct correlation
phase, as presented in [JHJT16], which is both costly and complex. As a result, the
heuristics are easier to develop, the evaluation is more straightforward and cleanup is
better performed. Furthermore, using group heuristics and re-evaluation rules we can
add detection for advanced threats by combining these features with the classification of
adversarial tactics and techniques provided by the MITRE ATT&CK® knowledge base.

In addition to new concepts and an improved detection model, we also present
improvements to the architecture of the security solution that make it easier to understand
and maintain. A high level view of the improved architecture is presented in Figure

[Event Interceptorj [Event Interceptor] [Event Interceptor]

Event [notifications J
Evaluation | Detection |Cleanup
Unit Module

1
Figure 2.4: Behavioral Detection Solution

e
Heuristics
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alert
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The first such improvement consists of making the interception method transparent
to the heuristics. The actions performed by processes are monitored using Event Inter-
ceptors and encapsulated into events that are sent to the Behavior Manager, consisting
of the Heuristic Engine and the Entity Manager. This way the heuristics only register
for events generated by these interceptors. With the previous architecture, if a heuristic
was based on API hooking, it needed to be implemented in User Mode, following UM
development constraints. Similarly, if it was based on file system filtering, for example,
it needed to be implemented in KM, following constraints specific to KM development.
The new architecture allows for the heuristics to be implemented in a single place with a
single set of constraints, which makes development and code reuse easier. In addition, the
heuristics are not strongly coupled with the interception method.

An essential improvement is the Entity Manager. It uses information provided by
the Event Interceptors, together with information from some heuristics (e.g. for detecting
code injection) to manage the processes and groups on a system and their relations.

Another key improvement is the Heuristics Database in which important information
used by heuristics is stored. Previously, this information was stored in the code of the
heuristics, which made changing the heuristics more difficult. In addition, the Heuristics
Database can also be used to store simple heuristics.

The Cleanup Module is also a new component. It was added to illustrate how
the remediation of a system can be performed once a detection has occurred using the
information provided by the Fvaluation Unit and newly added Entity Manager component.

2.2.1 The Management of Groups

The Entity Manager maintains a collection of processes executing on the client
system. This collection is dynamically updated to reflect the addition of new processes in
response to process creation, and the removal of other processes in response to process
termination. The Entity Manager divides processes into one or multiple groups and
maintains a set of associations indicating the groups each of those process belongs to. An
example illustrating multiple groups of processes is presented in Figure 2.5

Figure 2.5: Groups of processes

The solid arrows in Figure [2.5] indicate process creation and the dashed arrows
indicate code injection. The direction of each arrow indicates the direction of the relation-
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ship between the respective entities: process Py is a child of process Ps, process P; has
injected code into process Pi4. Groups of related processes are represented as dashed lines,
encircling those processes, and are denoted as G;, ¢ € {1,11}. For example, P; is the sole
member of group G, while G5 contains processes Ps... Py, P4 and Pi5.

Processes are divided into three distinct categories: group creators - illustrated using
triangles, group inheritors - circles and unmonitored processes - squares. By assigning
a category - or a role - to each process, the groups of processes are much easier to
identify and manage. Smaller groups, consisting of processes that are actually related,
can be created, avoiding the creation of a single, large group per system. The correct
identification of related processes is an essential aspect for the proper functioning of the
solution, because groups are used to correlate the actions of related processes as well as
perform a comprehensive cleanup of the protected system.

2.2.2 Heuristic’s Evaluation

Figure [2.6/A illustrates a heuristic that listens for events to identify six actions in a
certain time order. If these actions are identified, the heuristic will trigger an alert. If a
heuristic listens for actions performed only by a process it is called process heuristic. If it
listens for actions performed by all the processes inside a group it is called group heuristic.
An example of group heuristic is illustrated in Figure 2.6B. Whenever processes P; ... P,
perform actions A; ... Ag in a specific order, such a heuristic will trigger an alert for the
group that contains, among others, processes P; ... P;. Process creation is illustrated as a
zigzagged arrow.

Time Py Py Time
Ay f‘ll ffffffffffffffffffffff re Ay
Ay Ay DD o re Ay
Ay, Ay, As i e 9 As
in agy ogder P '+ A,
A ---------- e A

N
Ag A -9 Ag

P, P,

(A) (B)

Figure 2.6: Heuristic’s Logic Example

Even if the malicious actions are distributed among a group of processes and each
member of the malicious group performs only a small amount of these actions, using group
heuristics the security solution is able to correlate between the actions of related processes
and detect such an attack.

Correlating the behavior of processes within a group using group heuristics also
enables improving the Evaluation Unit, as it can maintain and update aggregated scores
for both processes and groups. Because a group contains processes related through process
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creation and injection, there is no more need to have heuristic’s propagation between child
and parent processes and between injection victim and injector processes. This is making
the evaluation of a process more straightforward. The updated equation for computing
the total score of a process is presented in ((2.2)).

Np,

S(P) =Y E(P,H)H;(P), E(P,H;)€[0,1] . (2.2)

The total score of a process P, is denoted as S(P) and is equal to the sum of all
Ny, scores of triggered heuristics H;(P). Each score being multiplied with the associated
exception weight E(P, H;). The exception weight for the i-th triggered heuristic may be
considered as a function of the evaluated process P and the heuristic H;.

The total score of a group S(G), computed as shown in (2.3)), simply adds another
dimension, by iterating all the N, processes inside a group and aggregating the group
heuristics scores. N; denotes the number of group heuristics triggered on the P; process.

S(6) =SS B(PL HYH(P), E(PyH) € 0.1] (2.3

j=1 i=1

2.2.3 Detecting Advanced Cyberattacks

Cyberattacks occur every day as malicious actors attempt to take advantage of
vulnerable systems and profit at the expense of businesses and even public institutions.
Very often, such an attack is orchestrated by an Advanced Persistent Threat (APT) actor,
who are highly skilled and motivated, well funded and have ample resources at their
disposal. Some actors are even sponsored by various nation states.

Because APT attacks are carefully planned and are often designed for a specific
victim after significant time was spent researching the target organization, they are highly
sophisticated and therefore challenging to detect. To solve this issue we propose an
approach that combines the capabilities of our behavioral security solution with the
MITRE ATT&CK [MIT] knowledge base of adversary tactics and techniques. This allows
us to develop new specific threat models for advanced threat detection.

MITRE ATT&CK classifies all malware techniques in 14 tactics, that represent the
reason that determines a malware to perform an action. Each tactic is broken down into
multiple techniques and sub-techniques that indicate how a tactical goal is achieved by
performing specific actions.

Using the Re-evaluation rules presented in Chapter 4 of the thesis, we can illustrate
how a new detection model based on the MITRE ATT&CK knowledge base can be
implemented. First of all, a re-evaluation rule is created for each existing heuristic to
associate it with its corresponding tactic and technique. An example of such re-evaluation
rule for a heuristic that identifies if a process hides a file is illustrated below. Similar rules
can be created for other heuristics, such as achieving persistence (tactic TA0003).

HEUR_HIDE _FILE

SetTactic: TA0005  // TA0005 Defense FEvasion tactic
SetTechnique: T1564 // T1564 Hide Artifacts technique
SetSubTechnique: 001 // 001 Hidden Files and Directories

Listing 2.2: Set MITRE information for HEUR_HIDE_FILE
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Once all the heuristics are augmented with the associated tactic and technique, new
re-evaluation rules that contribute to the total score of a process or group can be created.
Such re-evaluation rules are more generic and allow referencing high level malicious tactics
or techniques, regardless of the specific action that was used to perform them. An example
of re-evaluation rule that combines two tactics is presented below.

TA0005 // TA0005 Defense Evasion is set for process or group
TA0003 // TA0003 Persistence is set for process or group
Trigger: HEUR_DEFENSE EVASION_PERSISTENCE

Points: 100 // give 100 points

Listing 2.3: Rule to detect combinations of tactics

This type of behavior combinations are less common for clean application, so a large
amount of points can be added to the total score to reach the detection threshold. The
evaluation is also performed at group level, so it is not important which process performs
which technique or tactic, as long as the actions are executed by processes that are part of
the evaluated group. This allows the detection of advanced, multi-process attacks.

2.2.4 Remediation

In order to assure the best protection of a system, once a malicious entity is detected,
whether it is a process or group of processes, all traces of that entity must be removed
from the system and any changes performed by it must be undone. The Cleanup Module
is responsible for taking such actions, based on information received from the Evaluation
Unit and the Entity Manager. We propose an algorithm for system remediation after a
detection alert was issued, that is implemented in the Cleanup Module. The thesis also
enumerates several actions commonly performed by malware that are intercepted by the
security solution and can be remediated using the information stored for each action.

2.2.5 Experimental Results

We implemented the presented concepts into a behavior-based solution and compared
the detection rate of the group based approach and a non group based solution.

Table shows that the detection was improved for both tested collections of
malware samples with 10.61% and 5.16% . This shows that at least 5% of the malware in
both collections are multi-component or multi-process, thus proving the need of changing
the detection approach to a group based solution.

Table 2.2: Malware detection test

Samples Detected Detected Detected Detected
(no groups) | (no groups)[%] | (with groups) | (with groups)[%]
47933 37054 77.3% 42142 87.91%
16490 13084 79.34% 13935 84.5%

The results of the false positives test showed that the number of false positives does
not change when augmenting the security solution with group awareness. This is due to
the fact that the groups generated for legitimate applications usually contained a small
number of processes with few triggered heuristics.
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2.3 Performance Improvements in Behavior Based Malware Detection Solutions

For dynamic behavioral detection solutions, monitoring and analyzing the actions
performed on a system in real time comes with an intuitive downfall: the performance
overhead. This thesis proposes two solutions for this problem, that can be used separately
or combined. The first approach takes advantage of the advances in hardware and uses
asynchronous processing, thus reducing the impact on the monitored applications.

The second approach relies on a dynamic reputation system, based on which different
monitoring levels for applications can be defined. The differential monitoring of processes
according to their dynamic reputation leads to a diminished general performance overhead
and also a lower false positive rate.

Both proposed approaches are practical, straightforward to implement and to use
as well as easy to maintain (the dynamic reputation is self-adjustable according to the
defined rules). In addition, the proposed approaches solve the performance issue globally,
at framework level, without having to alter the detection model.

2.3.1 Asynchronous Heuristics

The first proposed solution for reducing the performance overhead is the use of
asynchronous heuristics. As almost all of the newly released devices are multiprocessor or
multi-core, this approach allows applications started by the user to run swiftly and with
less impact on a core, while the behavioral heuristics run asynchronously and in parallel on
another core. This allows a customer to have a great user experience and at the same time
benefit from security. Situations in which certain applications or even the entire system
seem to freeze will also be encountered less frequently or may no longer occur at all. The
logic of the asynchronous heuristic framework is presented in Figure
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Figure 2.7: Asynchronous Processing

The first step indicates that the execution of a monitored application is suspended
by a filter installed by the security solution. The filtered event is processed and if it is not
of interest for the security solution, the execution of the suspended application resumes. If
the event is of interest, the framework generates an event structure that is passed as a
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parameter to the synchronous heuristic callbacks, if there are any. Then, the framework
enqueues the event into an asynchronous FIFO processing queue and immediately resumes
the suspended execution. Essentially, the filters act as producers and the worker threads
(denoted T1 ... Ti) as the consumers. Once an event is dequeued by a worker thread, all
the asynchronous heuristics that listen for that event will be called in the context of that
thread. Then, the worker thread continues with the next event in the queue.

2.3.2 Record and Replay

Extensive testing is critical for a security solution to identify any bugs early and
prevent any issues for users. Developing comprehensive testing scenarios (testcases) requires
a considerable amount of time. In addition, to validate the detection rate, multiple large
collections of malware need to be executed in controlled environments. However, malware
is not always predictable or deterministic. Samples can alter their behavior, for example
based on commands received from a control server. In order to solve these problems and
improve the stability of the security solution through better testing, we propose two new
features: record and replay events.

The Event Interceptors (or filters) intercept the actions performed by a monitored
process and send the intercepted data to the Fvent Generator, as illustrated by Figure [2.8]
The intercepted data is transformed into standardized events that are then distributed to
various listeners. A listener is usually a heuristic that registers one or multiple function
callbacks that are called whenever an event of interest occurs. The call can be set to be
performed synchronous or asynchronous, depending of the listener’s need. The Record
feature is implemented by creating a listener that registers callbacks for all the events and
saves them in a database file. In order to lower the performance overhead, the registered
callbacks are called asynchronously.

[Event Interceptor} [Event Interceptorj [Event Interceptor}
Event |notifications J J
s
’ Send ‘ Registered Callbacks and
‘ Event Generator’ Event ‘ Heuristics

T

3 Record Event
Y
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Replay.exe [« - ----- Read RecordedEvents.db
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Figure 2.8: Record and Replay Diagram

To test the solution using the Replay Fuvents feature, recorded events are read by
the Replay.exe process and passed to the Event Generator, as illustrated by Figure 2.8
These synthetic events are then dispatched to the registered callbacks and heuristics as
if they were generated from an action intercepted by a filter. For the heuristics and the
rest of the security solution the replay process is transparent and the synthetic events are
handled as if they were authentic.

Because the recorded scenarios are fixed and do not depend on the environment or
a certain malware execution, we are able to verify that the heuristics, the evaluation and,
in the end, the whole security solution has the same output for a certain replay. Using
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Record and Replay, multiple functionality testcases and malware scenarios can be recorded
once and replayed multiple times, especially to test new releases. This results in a good,
comprehensive testing that ensures a great stability for the security solution.

In addition, new tools can be developed that automatically process collections of
recorded events and propose behaviors that can be targeted for malware detection or FP
reduction. The collection of recorded events can be used as training sets for ML based
malware detection and to validate new detection models. A malware behavior database
can be created and then queried to identify samples that manifest certain behavior, or
to track the evolution in terms of techniques used by a malware campaign. Furthermore,
malware samples can be classified into families based on their recorded behavior similarity.

2.3.3 Dynamic Reputation of Processes

Existing reputation systems are efficient in determining the reputation of widely
distributed files and usually store the reputation scores in the Cloud. However, there
are many networks isolated from the Internet or with very limited access to it, such as
enterprise or corporate networks. Moreover, the computers in such networks commonly
have custom applications installed. In these scenarios, a static reputation system that
relies on the Cloud will be almost useless.

If a dynamic reputation is used instead, based on the fact that usually in these
environments the same applications are used over and over again, if they do not perform
any malicious action, a good reputation for those applications can be built in time (e.g. 1-2
days). From that moment whenever that application starts again, it will be monitored very
lightly. This approach brings better performance and also fewer false positives. It also does
not require another analysis of the file and neither a researcher or an automated framework
to analyze it, because the reputation was build dynamically on the user’s machine.

Additionally, the reputation of an application can be reported to a higher level
reputation server, to be used by other systems without needing to wait for the reputation
to be built. In a similar way, if an application performs a malware specific action, its
reputation will be set to bad and reported to the server. A summary of the proposed
reputation system is illustrated in Figure [2.9]
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Network / Local \ i %
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Figure 2.9: Dynamic Reputation Servers
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In the most restricted way the dynamic reputation (database) server will be installed
only on the client system (1) (which may be offline, no connection to Internet or to a
network is required). Additionally, another server can be installed locally, at network level
(2). This way all the client installed databases can query reputations already built in that
network. These types of setup are very useful in enterprise environments. Furthermore,
there can be a public reputation server, installed in the Cloud (3), which can be queried by
any device connected to the Internet. The entire reputation system can function with any
combination of these three layers: only client, only local/network, client 4+ public/global
a.s.0. These layers can also share reputations between each other.

The first challenge to compute the dynamic reputation of a process is to uniquely
identify it. The methods to identify a file used for static reputation are simple, for example
by computing a hash on the file (i.e. SHA, MD5). In the case of dynamic reputation a
process must be identified with all its modules loaded into memory. To solve this problem
we designed a so called fingerprint of a process. This fingerprint uniquely identifies a
running application at a certain moment in time, by hashing all the modules loaded into
memory, including pages of memory that were written but are not necessarily part of a
module (e.g. are the consequence of a code injection). Each fingerprint has a reputation
(untrusted score) associated to it.

When a new process is started, its fingerprint is computed and one or more of the
available databases are queried for the associated untrusted score. If the fingerprint was
not found in any queried database, the score will be set to a default score, according to
some rules. Figure illustrates how the reputation of a process can evolve in time.
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Figure 2.10: Reputation of a Process

If a certain amount of time (At) had passed, and that process has not performed
any malicious action, its reputation will improve (the untrusted score will decrease) with
Awu and the monitoring will be lighter. If the process performs a malicious action, the
untrusted score increases with a preset amount associated to the action and that process
will be monitored more severely.

Each level of reputation (untrusted score) has an associated level of monitoring
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(events and heuristics). Processes with 100% untrusted score are fully monitored. Ap-
plications that have a fingerprint with the untrusted score of 60% are monitored by all
the events and heuristics corresponding to the level 60% and below. All the events and
heuristics in the upper levels are skipped for that process. The actions of processes with 0%
untrusted score are not monitored by the behavioral detection solution. In a full security
product, these processes may still be evaluated using traditional anti-malware signatures,
protected by an anti-exploit module a.s.o.

2.3.4 Experimental Results

To ensure that the strategies proposed to reduce the performance overhead do not
have a negative impact on the malware detection rate, we performed detection tests. The
results showed that adding asynchronous heuristics and dynamic reputation produced no
effect to the detection or false positives rate.

In order to obtain relevant results for the performance overhead tests we attempted
to replicate the industry standard testing methodologies of AV-TEST Institute [Insb]. We
focused on testing the performance overhead of our solution on every day usage scenarios,
like: copying files, executing office tools, installing wide-spread popular applications and
opening files with them. For all tested configurations, the solution with the proposed
optimizations performed significantly better than the solution without any performance
improvements, as illustrated in Figure 2.11, The biggest improvement was for the copy
scenario, with a performance overhead decrease from 35% to 4.5%.
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Figure 2.11: Performance Overhead Results

2.4 Bytecode Heuristic Signatures for Detecting Malware Behavior

To reduce the time required by security solutions to respond to new threats, we
proposed an innovative approach using an interpreter virtual machine, that we called
Behavioral Virtual Machine (BVM), capable of executing behavioral heuristics written in
a domain specific language and compiled into bytecode signatures. Using this approach we
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reduced by 85% the time required to update a behavior based detection solution to detect
new threats, while continuing to benefit from the versatility of behavioral heuristics.

The BVM enables the quick development of new heuristics, which allows for fast
prototyping. BVM heuristics can be quickly tested and deployed. If necessary, heuristics
can be adapted quickly and easily, in order to correctly detect samples that evolved to
be more evasive. The BVM also allows malware researchers without vast knowledge of
Operating System (kernel) programming to add heuristics. In addition, the releases can
be controlled and tested better, leading to more stable releases of binaries (drivers, DLLs),
which means fewer crashes and incompatibilities.

Figure illustrates the processing flow of the BVM. The Routine Dispatcher
loads signature files, located in the Heuristics Database. If there are no routines that
analyze events, the dispatcher ignores any event notifications and BVM is disabled.
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Figure 2.12: BVM Processing

When the dispatcher receives an event notification, it searches the routines that
listen for the received event. BVM routines can be either synchronous or asynchronous.
The execution of asynchronous routines does not block the thread from which the event
originated. Next each synchronous routine is selected and the BVM is called to interpret
it. After all the synchronous routines are processed, the dispatcher adds the asynchronous
routines into a processing queue. The processing queue is consumed by a pool of asyn-
chronous threads, each thread calling the BVM to interpret the first available routine from
the queue. During its execution, each routine may send various information to the rest of
the security solution, for example a scoring alert to the Evaluation Unit.

The BVM routines are similar to the callback functions in code-based heuristics, as
both are called when some event they listen for occurs. The main difference is that the
latter are executed directly on the processor while the former are interpreted by the BVM.

2.4.1 Structure of a BVM Signature

BVM routines are written in a domain specific language developed by us, with a
similar syntax to that of the C programming language. The operators that can be used to
write BVM heuristics are almost identical to the operators found in the C language.

The usefulness of BVM is best described with a practical example. Let’s consider
that a new malware threat, undetected by the solution, suddenly starts to affect thousands
of users. For example, this new threat is a ransomward] Ransomware are a type of

I'MD5 hash: 1fbd9al1fe96c868b7f99dbf6507dfd
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malware that encrypt the documents on the user’s computer and demands a ransom to
decrypt them [KRBT15, [TN19).

Traditionally, the response to this threat consists of writing a new code-based
heuristic. This requires updating a complex component of the solution such as the mini-
filter driver or a DLL, which is a long and laborious process. The development of code-based
heuristics needs to be performed very carefully and the code needs to be validated by
thorough testing. Certain certifications also needs to be obtained before the update can
finally be deployed to users.

Using BVM, researchers can write a heuristic, compile that heuristic into a bytecode
signature and then upload it to the update server. After the security solution is updated,
the BVM will decode and execute the instructions within the signature every time a trigger
event occurs. The logic of the heuristic could be the following:

#define STATE ENUM FOLDER 1
#define STATE WRITE_ TARGETED_FILES 2
#define MIN. ENUM FOLDERS 2

process uint32 state = 0;

process uint32 noEnumFolders = 0;

triggeredby (EVENT_FIND_FIRST_FILE)
void EnumFolders (PEVT_FIND_FIRST FILE DATA EvtFindFirstFile) {
if (0 != state)
return;
noEnumFolders++;
if (MINNENUM_FOLDERS =— noEnumFolders)
state |= STATE ENUM FOLDER;
}
triggeredby (EVENT_WRITE_FILE)
void FileWritten (PEVI_WRITE_FILE DATA EvtFileWrite) {
if (STATEENUMFOLDER != state)
return;
if (StrEq(EvtFileWrite—FileExt, ”"doc”)
|| StrEq(EvtFileWrite—>FileExt, "pdf”)
|| StrEq(EvtFileWrite—>FileExt, "jpg”)) {
state |= STATE_WRITE_.TARGETED_FILES;
SendAlert (EvtFileWrite-—>PID, HEURENUM_WRITE.DOCS, 30);

}
}

Listing 2.4: BVM Heuristic to Detect Ransomware

In this example, the signature contains an area for the definition of variables and two
BVM routines. Each routine is called when the event it listens for occurs. For example, the
EnumFolders routine is interpreted by the BVM only when the EVENT_FIND_FIRST_FILE
event is generated (when a call to the FindFirstFile API is intercepted). This routine
counts the number of enumerated folders and if it reaches a certain number, the state
variable is changed. This enables the second part of the heuristic, the File Written routine,
that listens for file write events. If the extension of the written file is doc, pdf, or jpg, it
triggers an alert for the process with the process id EvtFile Write. PID, a score of 30 points
and the heuristic id HEUR_ENUM_WRITE_DOCS.

BVM is also useful for trying new ideas of heuristics, even if they are not related
to an urgent threat. Using BVM prototypes of new heuristics can be created rapidly. If
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the results of the prototype are unsatisfactory, researchers can decide to either adjust it
and try again or to drop it. This way researchers have the advantage of not implementing
the heuristic in the driver or DLL until they have its final version. This also makes the
product more stable and more efficient in terms of bandwidth consumed with updates.

2.4.2 Experimental Results

To assure that potential bugs that can cause vulnerabilities in the security solution
such as those presented in |[CCK™13, [Orm11] were discovered, we performed tests to
validate the stability of the BVM. All erroneous bytecode-heuristics were handled gracefully
resulting in no hangs, crashes, or any other similar problems.

We performed tests to measure the performance overhead of the solution containing
5 and 50 BVM heuristics, relative to a baseline of the solution without the BVM. For all
the tested scenarios the performance overhead when adding BVM to the security solution
is very low, around or under 2%

BVM helps to significantly reduce the time to market of a new heuristic, from
between approximately 7-25 days for a code-based heuristic to 1-3 days for a BVM heuristic,
as presented in Table 2.3 Time to market represents the difference between the moment
when a security researcher starts implementing the heuristic until the heuristic is used for
malware detection by the security product on the user’s machine.

Table 2.3: Time to Market

Step BVM Code-based
Developing the heuristic | 1 - 2 days | 2 - 3 days
Testing (QA) 0-1day |4-5days
WHQL tests 0 1 -2 days
Scheduled update 0 0 - 15 days
The heuristic is used 0 0 -1 day
Total 1 -3 days | 7- 25 days

Developing a BVM heuristic is faster because there are not as many strict rules to
follow compared to writing the heuristic in a kernel driver or a DLL. The consequences of
a bug in a kernel driver or a DLL can be severe, so the development process is strict and
testing must be comprehensive. Compared to all that, a bug in a BVM routine will be
detected by the BVM interpretor and that routine will simply be skipped, so there is no
need to follow such strict rules when writing BVM code.
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3. Conclusions and Contributions

Modern day malware represent a serious security threat to both individual users
and organizations. As malware are constantly evolving and their number is continuously
increasing, there is a real need for proactive security solutions that can offer real-time
protection. This thesis proposes solutions for some of the most significant challenges in
behavioral malware detection.

Behavioral malware detection solutions cannot usually classify a sample as malicious
based on a single action, because that would lead to an excessive number of false positives.
In order to produce accurate detection results, multiple actions need to be evaluated,
which performed together indicate the malicious character of a sample. We proposed a
novel approach to construct a behavioral malware detection solution based on behavioral
heuristics to identify and analyze the actions performed by monitored samples and a
scoring engine to evaluate their behavior effectively. The solution implemented using the
proposed concepts achieved strong results, with few false positives and a high detection
rate. As the malware landscape evolves rapidly, the easily configurable concepts that form
the basis of the proposed solution make it simple to adapt in order to meet new challenges.

Another challenge is posed by malware that attempt to evade detection by distribut-
ing their payload into multiple distinct processes. To address this challenge, we proposed
organizing related processes into groups and evaluating their actions both individually and
as a group. We showed that by augmenting a behavioral detection solution with group
awareness, the number of detected malware samples increased by over 11%. Several exam-
ples of groups created for real-world multiprocess malicious samples were also presented
to show how malware attempt to take advantage of the lack of visibility in traditional
detection solutions that focus on single processes.

Making sure that a security solution does not represent an inconvenience for users
because of the performance overhead is another important aspect in behavioral malware
detection. We proposed two approaches to solve this challenge, that do not impact
the detection rate. The first approach, designed to take advantage of the prevalence of
multi-core systems, is to reduce the perceived performance overhead by analyzing actions
performed by processes asynchronously. We also proposed using a dynamic reputation
system and monitoring processes differentially, according to their reputation, to reduce the
usage of system-wide resources. Compared to other existing solutions that use reputation,
the proposed dynamic reputation system has several advantages. First of all, the distributed
and layered hierarchy of reputation databases make our approach better suited for networks
that have restricted or no access to the Internet, such as enterprise networks. The fact
that the reputation of a process is adjusted automatically based on its behavior represents
another advantage over other solutions that still struggle with applications that are new,
recently released or have few users. The results showed that the detection rate was not
affected and a considerable reduction in the performance overhead was achieved.

Malware authors are constantly trying to develop new strategies to evade detection.
Therefore, it is essential for a security solution to be able to respond quickly to new,
undetected threats. The longer it takes to obtain an updated behavioral model to detect a
new threat, the greater the number of users that are exposed and the higher the risk. To
address this problem, we augmented our proposed detection solution with an interpreter
virtual machine, called Behavioral Virtual Machine (BVM), that interprets behavioral
heuristics compiled into bytecode signatures. The BVM allows the quick development,
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rapid release and update of new behavioral heuristics, because the bytecode signatures
do not need to comply to the rigorous requirements for the development and testing of
binary components, such as drivers and DLLs, that make up the security solution. Another
advantage of the BVM is that it facilitates the swift development of prototypes, that
help security researchers determine if an idea for a new heuristic has a good potential or
would lead to too many false positives and needs to be further adjusted and refined. The
BVM also enables security researchers with limited knowledge of Operating System kernel
programming to implement new heuristics. Using the BVM we were able to reduce by 85%
the time needed to update the detection model in response to a new, undetected threat.

3.1 Thesis Contributions

The list of contributions presented in the thesis:

the architecture of a behavior based security solution using a minifilter driver and
User Mode hooking;

the concept of behavioral heuristics used to analyze intercepted actions in order to
identify malicious behavior;

multiple concepts related to the evaluation of a process: process total score, detection
threshold, heuristic’s points, exceptions, heuristic propagation, heuristic and process
flags, re-evaluation rules;

a method to aggregate scores of heuristics considering the heuristic exceptions and
interaction between processes;

an algorithm to handle process life cycle events in order to maintain a collection of
processes and relations between them;

an algorithm to evaluate heuristic alerts;

an exemplified guide for implementing new heuristics;

a method to use the telemetry mechanism to evaluate a heuristic’s precision;
a method to evaluate the performance overhead of a heuristic;

a method to adjust the points of a heuristic;

a method to add re-evaluation rules and flag induced exceptions;

improvements in the architecture of a behavior based security solution that uncouple
heuristics from filters;

multiple concepts used to detect multi-process evasive malware: groups of processes,
group creator, group inheritor, entity manager, group heuristics;

an algorithm to handle process life cycle events in order to construct and maintain
the groups of processes;

an algorithm to evaluate heuristic alerts for processes and groups;

a method to detect advanced cyberattacks;
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a method to perform system remediation;

a method to improve performance in behavior based security solutions using asyn-
chronous heuristics;

e a method to improve the testing and stability of a behavior based security solution;
e a method to improve performance using dynamic reputation of a process;

e a distributed method to propagate the reputation of a process;

e a method to adjust the reputation of a process;

e multiple concepts related to dynamic reputation databases: the fingerprint of a
process, monitoring levels, untrusted score;

e a method to evaluate the performance overhead of security solutions;

e improvements in the architecture of a behavior based security solution by adding an
interpreter virtual machine;

e the concept of bytecode heuristics;
e a method to detect ransomware using BVM signatures;

e a method to reduce time to market and improve the solution’s stability using BVM
prototypes.

3.2 Practical Value of the Thesis

e The majority of concepts presented in the thesis are successfully integrated in
Bitdefender products, contributing to their excellent results and protecting millions
of users against cyber-threats.

e Some of the presented concepts represent Intellectual Property and are protected by
6 patents granted by the United States Patent and Trademark Office.

e Some of the concepts described in the thesis have been published and presented at
academic conferences, as 4 scientific papers, thus improving the state of the art in
the field of behavioral malware detection.
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