

Computer Science and Information Technology

PhD THESIS

– ABSTRACT –

Contributions to Improving the Performance in Software-Defined
Networks

PhD Student: PhD Supervisor:
Sorin Buzura Prof. Eng. Vasile-Teodor DĂDÂRLAT, PhD

Examination committee:
Chair: Prof. Eng. Rodica Potolea, PhD - Technical University of Cluj-Napoca;
PhD Supervisor: Prof. Eng. Vasile-Teodor Dădârlat, PhD –

Technical University of Cluj-Napoca;
Members:
- Prof. Eng. Mariana Mocanu, PhD - Politehnica University of Bucharest;
- Prof. Eng. Adrian Munteanu, PhD - Vrije Universiteit Brussel, Belgium;
- Reader Eng. Piroska Haller, PhD - "George Emil Palade" University of Medicine, Pharmacy,

Science and Technology of Târgu Mureș;
- Reader Eng. Bogdan Iancu, PhD - Technical University of Cluj-Napoca.

– Cluj-Napoca –
2023

2

1. Introduction

The progress in the field technological communications has encouraged the rapid
development of large-scale computer networks. This is visible today in the form of the
internet, which is used in most of our daily activities, whether professional or personal. The
rapid development of the internet, due to global demand, was achieved through the
deployment of multiple identical hardware devices (such as routers and switches), which all
implement the same communication protocols (without the possibility of being easily
customised). This architecture is known as the traditional network architecture, which is
based on the homogeneity of the devices it contains. Although this architecture is easily
scalable, the devices are not easily customisable, and this does not serve the current
requirements where different applications and industries need custom management. This
problem is also enhanced by the increasing heterogeneity of connected devices in modern
networks. To address these issues, the Software Defined Networking (SDN) paradigm was
introduced, which aims to define the operating policies of a network in a software
configurable and dynamic way.

1.1. Context

The software-defined networking paradigm represents a new way of designing
networks to keep up pace with the emerging innovations developments in the research field.
This paradigm does not directly address the problems of traditional networks, such as
routing, traffic engineering or security, but it gives the possibility to implement innovative
solutions to address these problems [1]. Software-defined networks do not depend on the
hardware over which they are built, and the complexity of designing such a network is moved
to the software level. A software-defined network is divided into several planes, which are
used depending on the deployment context of the network. The separate planes are the
following: data plane, operational plane, control plane, management plane and applications
plane. The data plane manages the packets transmitted over the network based on the rules
received from the control plane. The main operations that devices in the data plane can
perform on network packets are: forward, delete and change. The operational plane is
theoretically separated, although in practical implementations its functions are part of the
data plane. The main functions of this plane are to determine the status of devices (e.g. on or
off) or the number of available ports on each device. The control plane is responsible to make
decisions on network traffic by sending instructions to devices in the data plane containing
instructions on what actions to perform on the data packets. The management plane is
responsible for monitoring and configuring the operation of network devices, especially the
devices in the control plane. The application plane contains the applications that use the
network services which also define the deployment context of the network [2].

1.2. Motivation

The challenges proposed in the current thesis are about the improvement of Quality of
Service (QoS) and Quality of Experience (QoE) of end users in software-defined networks.
Regarding the proposed topic of services and performance improvement in programmable
networks, performance metrics need to be defined in relation to each individual contribution.
A scientific process is characterised by two features: measurability and repeatability. Thus, for

3

each test scenario the measured parameters must be defined and each simulation or
experiment must have a deterministic behaviour. In traditional networks, QoS is
characterised by measuring the volume of data transmitted between two network nodes in a
given time interval. QoE is defined as the level of user satisfaction with network services [3].
This is not so easy to implement in software-defined networks, where architectural
separation into the different planes together with the use of multiple protocols (e.g.
OpenFlow, LISP - Location Identifier Separation Protocol or BGP - Border Gateway Protocol)
allow different local optimizations, which are not easily measurable when transmitting data
between two different terminal nodes. Thus, an important challenge that is addressed by this
PhD thesis is to identify the measurement metrics for each simulation and each individual
experiment that highlight the proposed improvements.

The research that was made in this thesis is significant because it provides a
framework that addresses various theoretical and practical topics in the areas of traffic
engineering, collaborative systems, artificial intelligence and security. Technical innovations
are proposed in all of these theoretical areas of work and at all the architectural levels of
software-defined networks. The above topics encompass most of the functions of a network.
Their aggregate implementation in the same system provides a complete solution that can be
used in software-defined networks. While most studies focus on a single topic where the same
traditional metrics are used to measure performance, this thesis proposes new network
topologies and new benchmarks for simulations and experiments. Having newly proposed
topologies that address interdisciplinary topics, the measurement metrics also need to be
adapted to represent different network operations that influence other functionalities within
the network. One such example, which will be detailed in the following chapters, is in the
context of security where a network attack consumes the available network bandwidth. This
leads to a decrease in the bandwidth allocated to useful and relevant data traffic. The
proposed metric to improve network performance is the detection time of an attack occurring
in the network, which, the lower it is, the more it succeeds in increasing the amount of critical
data traffic. So, it is not strictly measuring the transmission speed at the two ends, but it is
measuring the duration of another operation that subsequently affects this speed of the
relevant network traffic.

The complexity of this thesis is determined not only by the technical difficulties, but
also by the chosen working methods, which, through incremental development, have led to
results throughout the entire working period. Among the technical elements that demonstrate
the increased complexity are the following: the interdisciplinary nature of the thesis that
addresses different areas with applicability in the field of software-defined networking; the
heterogeneous nature of the work carried out that uses different hardware technologies,
different software technologies, but also different communication protocols between network
devices; the development of solutions using information from all layers of the TCP/IP
(Transmission Control Protocol/Internet Protocol) protocol stack; the implementation of
software solutions in different operating systems (Windows, Linux) and in different
programming languages (C, C++, Windows Batch, Matlab, Python, Java, C#, Linux Bash,
qmake); the automation of test scenarios through software programmability. Among the
learning and working methods that have facilitated the development of the published
solutions are the following methodologies: problem based learning - this methodology
assumes the existence of a problem that has no solution and must be solved in some way;
project based learning - this methodology assumes the existence of a project feature that must
be brought to completion; challenge based learning - this methodology assumes the
achievement of a goal for which the necessary knowledge does not yet exist, and which must
first be identified and then learned.

4

1.3. Objectives

 This subchapter presents the objectives of this thesis. The main objectives address the
conceptual and theoretical aspects of the proposed topics. The secondary objectives address
the implementation details that were necessary to fulfil the main objectives. A chapter from
the personal contributions section corresponds to each main objective. Of the four personal
contribution chapters, the first three address individual research innovations, while the last
chapter incorporates the previous innovations into the same working environment.

1.3.1. Main Objectives

1.3.1.1. The main objective of the first personal contribution chapter is to propose
performance improvement in software-defined networks by improving the QoS and QoE
characteristics of the network by reducing redundant traffic at the data plane level in a
wireless sensor network. (Chapter 3)

1.3.1.2. The main objective of the second personal contribution chapter is to propose
performance improvement in software-defined networks by developing a distributed and
collaborative control plane for reducing control traffic and maximizing critical data traffic in
the network using various collaboration techniques. (Chapter 4)

1.3.1.3. The main objective of the third personal contribution chapter is to propose
performance improvement in software-defined networks by addressing security risks that
may negatively impact essential network data traffic. (Chapter 5)

1.3.1.4. The main objective of the fourth personal contribution chapter is to propose
performance improvement in software-defined networks by creating a hybrid software and
hardware development framework that allows concurrent testing of the policies defined in
the previous objectives. (Chapter 6)

1.3.2. Secondary Objectives

The secondary objectives are grouped for each main objective represented by a
separate personal contribution chapter:

1.3.2.1. Secondary objectives for traffic management in an SDWSN (Chapter 3):

• Study of different traffic management methods that can be integrated into an SDN

• Creation of a test network on a single device using the property of network interfaces
to have multiple IP addresses configured on them

• Identification and usage of a representative data set for testing the implementation

• Definition of the performance metrics at the data plane layer in an SDWSN

1.3.2.2. Secondary objectives for the development of the distributed and collaborative control
plane (Chapter 4):

• Implementation of the network communication between the devices in the distributed
system (the distributed and collaborative control plane)

• Usage of the OpenVSwitch solution and the OpenFlow protocol to generate data sets
during the testing phase

5

• Study and implementation of the fuzzing technique in the context of QoS in SDN

• Study and implementation of artificial intelligence (AI) techniques in SDN, more
precisely the decentralised federated learning technique

• Definition of the performance metrics in the interaction between the control plane and

the data plane of the SDN

1.3.2.3. Secondary objectives for addressing security risks in an SDN (Chapter 5):

• Study of different types of attacks that can be generated in the network

• Execution of network attacks using Kali Linux

• Usage of the OpenVSwitch software solution based on the OpenFlow protocol and its
extension with functionality that will run at the data plane layer of the SDN

• Definition of metrics for measuring the performance in the data plane layer of the SDN

1.3.2.4. Secondary objectives for the development of a hybrid development framework
(Chapter 6):

• Demonstration of the heterogeneous and interdisciplinary nature of the topic of
software-defined networks

• Integration of different programming techniques and software architectures in the
research work for rapid development and prototyping

• Application of solutions at all architectural layers of the SDN (application, control and
data planes)

• Implementation of the framework using working environments used in research, such
as Mininet and Mininet-WiFi

• Integrating multiple hardware devices into networks created in Mininet and Mininet-
WiFi

• Development of methods using protocols from all layers of the TCP/IP protocol stack

1.4. Presentation of the Thesis Research

 This PhD thesis is defended by the following published results: 3 articles in ISI indexed
journals (all of them as first author), 4 papers presented at ISI Proceedings indexed
conferences (3 of them as first author), 6 papers presented at IDB indexed international
conferences (3 of them as first author).

6

2. Bibliographical Study Related to the Proposed Objectives

2.1. Traffic Engineering in Software-Defined Wireless Sensor Networks

User expectations are reflected by the increasing functionality of applications that use
data provided by a wireless sensor network [4]. The academic community is making
continuous efforts to provide opportunities to meet user requirements by offering dynamic
programming solutions for such networks. The ultimate goal of these efforts is to allow the
management of heterogeneous networks with different topologies as autonomously as
possible [5], [6], [7]. Software-defined networking is now the main paradigm used for
network programmability. It is important to note at this point that this paradigm does not
impose a specific communication protocol between its planes, but OpenFlow is the most
popular encountered protocol [8]. [9] proposes a routing algorithm in the context of SDWSN
that defines packet transmission routes according to the energy level of each node in the
network. [10] shows the activity patterns of a WSN while data is being transmitted or while
the network is idle. There are studies in the literature that use different data caching methods
in WSNs [11]. [12] uses a variant of data content caching. Another way to improve traffic
quality is to use a routing algorithm that also uses load balancing techniques, or clustering
[13]. [14] succeeds in formulating a scheduling mechanism that improves the energy
efficiency of a SDWSN by a variable percentage between 20-40%. [15] proposes a data flow
separation algorithm to minimize congestion with the aim of improving network energy
efficiency. [16] shows a compromise solution that forwards data computed from a hashing
operation. [17] presents ways to find similarities between data by processing the generated
hashes. One of the most widely used techniques to reduce energy consumption in WSNs is
grouping sensors in a cluster [18], [19]. The coordinating sensor is chosen based on the
energy level of the sensors in the cluster, but different methods of predicting and
probabilizing energy levels can also be chosen [20]. [21] uses machine learning technique to
decide which sensor is the coordinating sensor of the cluster, thus reducing the transmitted
traffic.

2.2. Collaborative Systems in the Software-Defined Networks Control Plane

Improvements in QoS are continuously being adjusted and will evolve as networks
improve their operating parameters [22]. The OpenFlow protocol is used to standardize
communication between the data plane and the control plane of a software-defined network.
By removing some computational functions from devices in the data plane, they will increase
the amount of data they can forward, resulting in improved network QoS characteristics. This
is demonstrated in [23], which also argues that one of the most important parameters in the
OpenFlow rules that can be used in the collaborative system is the OpenFlow rule lifetime, i.e.
the time until the rule is deleted when it expires. [24] implements a framework in clusters of
nodes of a data plane with the aim of providing improvements for QoS. [25] validates the use
of the OpenFlow protocol in software-defined networks with the end goal to provide adaptive
and dynamic QoS. [26] validates the use of a distributed control plane especially in the context
of software-defined wireless sensor networks. [27] explains different design architectures for
the control plane in software-defined networks. There are many techniques used to improve
the QoS offered by computer networks: Random Early Detection (RED) algorithms, machine
learning [28], [29], different traffic classification methods [30], [31], [32], etc. [33] presents

7

different ways in which learning-based techniques are integrated in distributed systems, such
as in the context of the current PhD thesis. Recently defined by Google in 2017 [34], federated
learning has since grown to be used in industry for various use cases in QoS related areas
[35]. [36] presents different applications of using federated learning technique, but a general
feature is that the process involves a centralized global model that is cloned and distributed to
each participating node. [37] proposes a new solution in which the main idea is to
communicate only the sign of each gradient update instead of the actual value. [38] uses
ternary sparse compression to solve the non-IDD data problem. The algorithm is inspired by
the top-k sparsification technique, communicating only a small fraction of the largest
gradients in the model. [39] is a study that applies the federated learning technique to
improve packet routing in a software-defined network. [40] uses federated learning to
improve traffic monitoring systems based on the data they collect. [41] addresses the problem
of data traffic classification by proposing a traffic classification protocol. In a switch
implementing the OpenFlow protocol, whenever a packet does not match any flow record,
packet transmission is stopped until the associated control device responds with the validity
duration for that data flow [42]. [43] addresses the table miss problem and attempts to
mitigate it by implementing functionality on OpenFlow switches not to delete flow records
when their validity duration expires, but rather to mark them as inactive for a period of time
in case the same rule is needed in the immediate future. [44] also addresses the problem of
reducing the number of table misses, but in this case the paper uses buffering and cache-
rolling for a series of packets belonging to the same stream, thus sending a single packet_in
request for the series of packets belonging to the same data stream. For the system using the
fuzzing technique in the current PhD thesis, simulations use datasets containing values similar
to those presented in [45] to measure the performance of the system.

2.3. Security in Software-Defined Networks

Along with the positive opportunities introduced in the field of software-defined
networking, security risks in such networks have also increased and, as a result, much
research effort is directed towards detecting and mitigating network attacks [46]. Attacks
based on the ARP spoofing techniques allow a malicious actor to assume the identity of
another network device by generating ARP requests (via gratuitous ARP packets), but which
appear to originate from the device intended for actual communication on the network [47]. It
is important to note that the ARP spoofing attack is only the attack that creates the context for
other attacks, such as MitM (Man in the Middle). Therefore, it is actually the attack that needs
to be detected and mitigated, not the attacks that are developed afterwards [48]. [49]
highlights three main categories of solutions against ARP spoofing attacks: solutions based on
traffic patterns; solutions based on flowcharts; solutions based on analysing mappings
between IP addresses and MAC addresses. [50] is an application that analyses data traffic and
monitors all ARP requests flowing through the network, and when a request contains
mappings that are inconsistent with the mappings already existing in the monitoring
application's database, this data frame is blocked. [51] presents an improved network
architecture that prevents the generation of ARP MitM attacks. [52] is a study that relies on
mappings stored on other devices in the network. The mechanism of operation of the
OpenFlow communication protocol runs in several steps according to [53], and the
complexity and duration of this whole process is intended to be avoided. The flow graphs are
based on the interception and interpretation of OpenFlow packets in the network. [54]
dynamically generates flow graphs for OpenFlow traffic between the control plane and the
data plane of a software-defined network. [55] does not operate in the context of software-

8

defined networks, but provides an approach for addressing ARP spoofing attacks by analysing
network traffic using the JPCAP library for monitoring data traffic. A similar situation is found
in [56], where a control device is extended with functionality that notes malicious MAC
addresses in a blacklist, and this list is passed to switches via the OpenFlow protocol. [57]
designs a multi-step algorithm to detect attacks in real time. [58] argues that computational
efficiency is improved when the controller is not involved in decision making. [59] describes
the implementation of methods to reject ARP spoofing attacks. The solution is implemented as
an extension to the Open Floodlight control solution [60]. [61] states that it demonstrates a
solution to the same problem, being implemented in the data plane, but it requires Ryu [62] to
define the initial rules, which are passed to switches in the data plane. From a technical
perspective, [63] proposes a detection algorithm also implemented in Bash, but running only
on terminal devices, and the attack can only be detected if it is performed towards the current
machine. [64] considers the impact of such solutions from a QoS point of view.

2.4. Frameworks for Simulations and Experiments

Mininet [65] is an emulator for Ethernet wired networks, but it has other extensions,
such as Mininet-Wifi [66] and Mininet-Optical [67], which implement Layer 2 protocols from
the ISO/OSI protocol stack, specific to wireless and optical transmission technologies
respectively. An example for the utilization of the OpenFlow protocol is the study in [68],
which explains the use of the POX SDN controller solution [69] for defining operating rules in
the software-defined network. [70] presents an extension of the Cooja simulator under the
name WSDP (Weather & Soil Data Provider). This extension is actually a plugin for the Cooja
simulator [71] that is able to generate real-time geographic data for sensors created inside the
simulator. [72] presents a complex approach to address congestion in networks. [73] presents
a framework for simulating the route generation process based on different traffic categories
in a 6LoWPAN wireless sensor network. [74] describes a solution on how to manage wireless
sensor networks using the SDWSN paradigm where energy consumption is reduced by using
control plane for network management. Another study addressing the dynamic routing
problem is presented in [75] where a real-world environment is used to test different routing
algorithms with the aim of increasing network lifetime. [76] uses the OMNeT++ simulator [77]
to implement algorithms to improve the throughput of certain data flows in the event of
congestion at the router level. The study presented in [78] explores different technologies
used in software-defined network performance and stability experiments. Another study
measuring the performance of POX and Ryu control solutions in networks built in Mininet can
be found at [79]. Different topologies of linear networks, tree networks or data centre
networks are used in the simulations. [80] uses a load balancing algorithm, which is based on
monitoring the traffic in the used sensor network. The study presented in [81] uses Net2Plan
[82], a network function management utility, together with the SDN-specific controller
OpenDaylight, which is based on the Java programming language. [83] creates a framework to
address energy efficiency and security in wireless sensor networks in the IoT domain. [84]
uses Mininet-WiFi together with the Ryu controller to measure the performance of a
multipath-based routing algorithm with the ultimate goal of improving QoS rules. For real-
time programmatic processing of packets flowing through the network, PCAP (Packet
CAPture) software solutions can be used, including the following: Npcap [85], SharpPcap [86],
Pcap4J [87] or jNetPcap [88]. These solutions are usually used as a static or dynamic library
by the main program. [89] presents a client-level QoS monitoring and management system
using the SharpPcap library. [90] presents the challenges offered by a large-scale IoT
environment. [91] presents a software solution that compares the execution time of some

9

operations performed at the network level. [92] addresses an emerging topic of unmanned
aerial vehicles (drones), which benefit from autonomous control when they lose network
connection. The study in [93] presents five large-scale SDN frameworks used in campus or
backbone networks. The study in [94] addresses the problem of large-scale networks where
multiple control devices are needed to serve the network requirements. [95] discusses
various issues related to the placement of SDN control devices. [96] describes a software
solution to simulate a data management system in a cloud computing context. [97] analyses
asynchronous transmissions between nodes in a network with the ultimate goal of improving
overall network performance and reducing overall energy consumption. [98] classifies
different approaches for managing applications and work operations in large-scale systems.
[99] discusses the issue of security in software-defined networks. [100] proposes the IoTSim-
SDWAN solution, a simulator capable of modelling, simulating and evaluating new solutions in
SD-WAN systems and datacenters built over SDN architecture. [101] proposes a mechanism
for deploying IoT devices at the network edge using the methodology provided by SDN. [102]
demonstrates the use of two architectures for control plane design, namely, a linear and a
hierarchical architecture. According to [103], traditional methods used in the context of
software updates include the following: manually updating each sensor; running a static
operating system image connected statically at the node level; using dynamic operating
systems. According to [104], for updating a WSN, three elements closely related to power
level management in WSNs and related to the computational capacity of all devices must be
considered: the execution environment at each sensor level; the network data transmission
protocol; the algorithm used to optimize the software update process. In addition to these
traditional elements, modern networks require several additional elements, according to
[105], namely: non-intrusive remote updating (Over the Air); reducing the impact on WSN
performance; limiting communication between devices and constraining communication to
essential traffic only; rapid propagation of software updates in the network; implementing the
ability to scale networks. [106] addresses this issue from a security perspective by using a
blockchain system in the data transport mechanism. [107] also addresses this problem from a
security point of view and implements a proprietary authentication key allocation and
distribution system for the software update process. [108] discusses different industrial IoT
standards such as Zigbee [109], WirelessHART [110], ISA.100 [111] and how they operate at
different levels of the ISO/OSI protocol stack.

10

3. Improving the QoS Through Traffic Engineering

3.1. System Design

The research objective of this chapter is to implement a system in which a sufficiently
knowledgeable control component can manage a wireless sensor network and determine
whether or not the sensors should transmit data. In addition, the controller can also decide
whether to transmit data proactively for each sensor, thus reducing the amount of data traffic
in the data plane, which represents a WSN. This proposed system is shown in Figure 3.1.

In order for the controller to perform the proposed functions, it implements two
components. First, it implements a basic learning component that learns the behaviour for
each sensor, i.e. the data transmission frequency for each sensor, to determine a transmission
pattern. Second, it implements a data transmission mechanism based on the previously
determined interval patterns. It is important to note that the control component does not
collect energy levels from sensors to improve energy efficiency, but relies solely on the data
transmission frequency from each sensor.

The test environment shown in Figure 3.1 was built by implementing a control
component and a generic, reusable sensor component in software. The control component
and several sensor instances were deployed in different virtual machines on different
computers in a wireless LAN. For initial tests, it is also possible to configure multiple network
devices in the same machine using virtual network interfaces, but for final measurements, the
wireless communication between network devices is required. This is mandatory to bring the
environment closer to a real WSN.

Figure 3.1 Network topology used in the testing scenarios

11

Each sensor implements functionality to generate sensor data and to act as a relay
node according to the illustrated connections between network devices. Unlike using network
emulators such as Mininet, where all network devices are run from a single computer, this
approach has the advantage that there is a more realistic time interval between packet
transmission and receipt. In addition, each sensor can be easily configured to generate
random data or to replicate already stored data from a reference dataset at any interval. The
network supports the IP protocol and static IP addresses have been configured on network
devices according to the network topology. The sensor nodes were implemented with
modules to generate sensor data, generate HELLO packets and routing capabilities to forward
packets to a destination. Regarding the use of HELLO packets, these are not included in the
mathematical model of the current proposal. This is based on the assumption that the use of
HELLO messages is already a mechanism implemented by data transmission standards that
are found at the data link layer of the TCP/IP protocol stack, checking whether wireless nodes
are active or not. The wireless standard and literature guarantee that during the
nonconstrained period, more information can be combined into a single packet, such as data
and acknowledgements [112]. The minimum size of a TCP packet is 20 bytes [113], and when
added to the size of the data payload, the results may have a different value depending on the
type of packet transmitted, whether it represents sensor data or control data. Sensor data
packets on network devices were generated from real sensor data retrieved from online data
sources [114] over a four-week period. HELLO packets were designed to be generated at a
much higher frequency than sensor data packets. The components were implemented in C++
using the Qt framework [115] for the facilities it brings to network communication and
general software development.

3.2. Practical Results

The simulated context was the climate differences in various geographical regions. It
should be noted here that the system works in other contexts as well, but the test network
was chosen with the weather test subject because there are many already available data
sources that can be used to perform the tests. Historical weather data was taken from the
website of the data source referred to in [114] for different locations: Reykjavik (Iceland),
Ouarzazate (Morocco), Budapest (Hungary). The reason why these three locations were
chosen is due to the different climates they present. Reykjavik has a rainy oceanic climate,
Ouarzazate has a desert climate, while Budapest has a temperate-continental climate.
Calculation of the gains for the different network lifetime scenarios shows that the proposed
system exhibits consistent behaviour in each scenario. In the long lifetime scenario, the total
gain (i.e. percentage of optimised packets) is 25.1% of all packets. In the medium lifetime
scenario, the total gain represents 25.71% of the total number of packets. And finally, in the
short lifetime scenario, the gain represents 25.05% of all packets. This leads to the conclusion
that the system saves about 25% of the generated network traffic. Most of the saved data
values that are not transmitted are sensor defaults, which are generated when the sensors
have nothing to report. The small difference between the scenarios depends solely on the
nature of the sensor data in the selected dataset. The literature describes 5% as being critical
for the QoS of a system [116].

3.3. Discussions and Conclusions

The system proves to be effective in eliminating duplicate traffic in the WSN layer by
using a few simple algorithms that are implemented at both the controller and sensor levels.

12

They combine concepts such as learning (at the control device level), content awareness (at
the sensor level) and caching. The system is efficient even in packet-loss environments, as
demonstrated by previous test scenarios where transmission errors have occurred. The
threshold at which the system becomes less efficient is when the packet transmission rate
reaches 15%, which is considerably higher than the threshold defined in the literature for
lower quality QoS in wireless data systems. The additional memory resources required by the
system are negligible in the WSN layer. The controller needs more memory to cache data from
each sensor in the topology; however, the controller does not belong to a resource-
constrained environment and can be more easily updated to support deployment. In addition
to reducing energy consumption in the WSN layer, this proposed system has an additional
benefit of reducing congestion in sensor queues due to reduced network traffic, thus speeding
up packet processing.

Considering the test scenarios, which use data from three real locations, it can be said
that the system is more suitable for selective deployment in one location than in all locations.
This is due to the real data values, which may be more stable in some parts of the planet.
However, this is by no means a rule in all possible scenarios, as the test data may also be
different depending on the selected time period. In any case, a definitive conclusion that can
be drawn is that the system brings optimisations in any environment in which it is
implemented. The system also succeeds in increasing network lifetime because fewer packets
are transmitted by the WSN layer, it improves QoS by reducing traffic volume in the WSN
layer, and it improves QoE by proactively transmitting cached data to the application plane
instead of waiting for the same data to be received from the sensors. There are some
limitations and situations where QoE is not achieved, but these situations are considered as
not being critical situations.

In conclusion, the main objective defined in subchapter 1.3.1.1. was achieved by
improving network performance through traffic engineering and the desired effect of
increasing network lifetime was successfully obtained. The secondary objectives defined in
subchapter 1.3.2.1. were also fully achieved by the following aspects: traffic was handled by
data caching and adaptive data broadcasting techniques; the system was implemented using
socket communication between multiple IP addresses configured on the local interface of the
computer used for the simulations; the actual dataset was taken from the Meteoblue website
containing historical data accessible for validation of the solution; the metric for performance
verification was chosen as the network lifetime.

3.4. Results Dissemination

The results obtained in this chapter were disseminated in the following publication:

[117] Buzura, S.; Iancu, B.; Dadarlat, V.; Peculea, A.; Cebuc, E. Optimizations for Energy
Efficiency in Software-Defined Wireless Sensor Networks. Sensors 2020, 20, 4779.
https://doi.org/10.3390/s20174779 IF: 3.576 Q1

13

4. Development of Collaborative Systems to Improve QoS
Features in Software-Defined Networks

4.1. System Design

Two environments were defined and implemented in this stage. The first environment
was based on simulating communication between network devices and simulating network
traffic on the TCP, UDP and ICMP protocols. This approach was useful to validate the proposed
algorithms before applying them in real data traffic context. The second environment was
based on generating network traffic between multiple devices running on the same computer.
This was achieved by using multiple local IP addresses (loopback addresses: 127.0.0.1 -
127.255.255.255 or multiple IP addresses configured on the same network interface) that
allow processes in the operating system to use a specific Layer 3 address. This approach is
useful for generating realistic test scenarios based on real network traffic. Realistic test
scenarios are necessary to generate conclusive results. Three topologies of the proposed
networks were considered. These are: a network with a non-distributed control plane; a
network with a distributed and non-collaborative control plane; a network with a distributed
and collaborative control plane. The first topology’s purpose was more to validate the
continuous implementation of the used algorithms. Also, the non-distributed and distributed
noncollaborative scenarios also had the role of validating the proposed distributed and
collaborative system improvements at the end.

4.1.2. The Design for a Distributed Fuzzing System

As previously mentioned, the goal of the system is to be self-adaptive and
automatically adjust the traffic switching rules based on the number of missed rules. The
number of failed rules is actually the number of packets for which the switch does not have an
active switching rule and is forced to ask the controller for instructions on how to act on that
packet. The fuzzing technique was chosen as the way for control devices to make decisions
about changing packet switching rules, while the distributed method of using multiple control
components allows multiple decisions to be made simultaneously, thus finding the optimal set
of rules faster than when using a single control component. Communication between control
devices is achieved by means of broadcast messages (transmitted throughout the control
plane) through which the control devices share their configurations and statistics for each
configuration, namely, a table with each timeout value to be used for each traffic type and the
miss counter for each traffic type. The algorithm is implemented on the network control
devices and assumes that the environment is a fully reactive SDWSN system, where the SDN
component's data plane switches do not contain predefined rules at initialization for packet
switching.

4.1.3. The Design for a Distributed Decentralized Federated Learning System

The system design begins with each control device waiting the receipt of a packet.
When the packet is received, the controller checks the source of the packet if it was generated
by another controller or by the directly connected switch from the data plane. If the source of
the packet is another control device, this packet may only contain new training data to be
stored for re-training. A control device starts its own training procedure when it shares data
with other control devices. If the source of the packet is the attached switch, this packet can be

14

of two types. The first type of packet is an OpenFlow packet_in packet, and the second is a
packet responding to the control device's request for training data from the switch. If the
packet is of type OpenFlow packet_in, the controller increments the error counter for the
traffic type queried by the communicator and responds to the switch with a packet of type
packet_flow_mod containing the timeout value (to inform the switch how long it can redirect
packets of that protocol type) that will be stored on the switch until it expires. The timeout
that the controlling device responds with is calculated every three minutes by querying the
local machine learning library. If the packet represents the response received for the training
data request, this data will then be processed for the machine learning component.

4.2. Practical Results

In order to obtain the practical results, simulations were carried out in the topologies
described in section 4.1. The three topologies were tested in the simulation scenario for the
fuzzing technique. The topologies with multiple control devices were used for testing the
federated learning scenario. The reason why all three topologies were only used in the fuzzing
scenario is because the first topology was only useful in the development stages, but not for
the final test. The final purpose of these practical results is to be able to observe the behaviour
of the two techniques used in distributed systems.

4.2.1. Results Obtained Using the Fuzzing Technique

Figure 4.1 Results obtained using the fuzzing technique

In the first test scenario, the non-distributed and non-collaborative topology, the
controller contains a single miss counter table which is used for each connected switch. After
each iteration, the controller performs the fuzzing operation on the current timeout values
with a random variation of maximum ten seconds. The second test scenario, the distributed
and non-collaborative topology, implements the same algorithm on the control devices, with
the difference that there is one switch connected to each control device, but the number of

15

sent packets is identical. The control devices implement the same algorithm, but since their
number is multiplied by three, there will be more fuzzing and therefore there will be more
chances to generate a more favourable rule set. The third test scenario, the distributed and
collaborative topology, presents an extension of the previous scenario, in which the control
devices share information about their current sets of switching rules and the number of
misses generated by each rule for each traffic type. The main difference from the previous
scenario is that there is less chance of generating temporary negative results, since control
devices have the possibility to cancel their current rule set if another control device has
shared a better performing rule set, thus avoiding the use of insufficiently good rule sets.
Figure 4.1 shows the results obtained using the fuzzing technique.

4.2.2. Results Obtained Using the Federated Learning Technique

Figure 4.2 Testing scenario for the decentralized federated learning technique

Figure 4.2 shows the test scenario that was considered for the simulations using the
decentralized federated learning technique. Two distributed systems with three control
devices, one non-collaborative and the other collaborative, were considered. The figure
indicates the congestion level encountered by each control device through the green or red
loading bars, where the green color bar means low congestion and the red color bar means
high congestion. It is important to explain that this is a simplified illustration, congestion is
not actually encountered on the control device but on the switch, and this congestion is
reflected on the control device by a higher number of OpenFlow packet_in packets received
from the connected switch. So the green or red loading significance at the control device level
represents the number of OpenFlow packet_in requests that are increasing as the attached
switch receives network traffic for switching. The grey arrow indicates that there is a
transition period between the states encountered in the simulation, and the three different
states take place as follows: control devices encounter network traffic, C1 and C2 do not
experience congestion, C3 experiences congestion; a retraining occurs after a certain period of
time; in the third state, after retraining occurs on all control devices, C1 begins to experience
congestion compared to the first state where this does not occur.

Figure 4.3 displays a graph view of the number of misses at 10-minute intervals in the
simulation. The full simulation lasted a total of 2h and 30 minutes. The training took place in

16

each system approximately halfway through the run. The timing of training depends on the
number of data sets collected for training, so this operation does not always occur at regular
intervals. In the case of the non-training system, the C1, C2 and C3 control devices were re-
trained at 1h 40m, 1h 50m and 1h 30m respectively. From the graph it can be seen that when
switching to the third state, where congestion occurs on the C1 control device, an increase in
the number of misses occurs. This happens due to the fact that more network traffic will
inevitably generate more misses due to the lack of periods when there is no network traffic. It
can be seen that in the case of the collaborative system there is always better performance by
the fact that training data is shared before the congestion occurs. When entering the third
state, the C1 controller will generate approximately the same number of misses as the C3
controller because the C1 controller has already managed to train based on the experience of
the C3 controller. This is not the case for the non-collaborative system, in which the C1
controller will have at the beginning of the third state a number of misses approximately
equal to the number of misses encountered from the C3 controller at the beginning of the first
state.

Figure 4.3 Results obtained using the decentralized federated learning technique

4.3. Discussions and Conclusions

The proposed fuzzing system shows an overall improvement in the average number of
misses on switches in the data plane when using the distributed and collaborative system. The
collaborative technique also generates the fastest decrease in the number of misses after the
completion of the first iteration. If further explored, this mechanism based on distributed
delegation of decision making can become a powerful solution in dynamic content
environments (e.g. SDWSNs) to reduce manual network management effort. Automating the
definition of QoS rules improves the user experience and, given current artificial intelligence
technologies and capabilities, this area can be greatly improved. Continuing the proposal
made in the fuzzing system, a system using decentralized federated learning technique was
implemented which solves the same problem of decreasing the number of misses as different
types of network traffic are encountered by switches in the data plane. The scenario simulated
in the decentralized federated learning system is more complex and uses real data traffic,
unlike the fuzzing scenario where network traffic was simulated. The simulations

17

demonstrate the effectiveness of the distributed and collaborative approach. It provides the
best performance in terms of reducing OpenFlow communication packets between control
devices and switches. In addition, self-adaptability is demonstrated in each scenario, but is
shown to perform best in the collaborative scenarios.

In conclusion, the QoS in such a distributed and collaborative system is improved
because if there are fewer interactions with OpenFlow packets, then the time spent waiting to
make the decision via the OpenFlow protocol is replaced by actually switching data traffic in
the network. Thus, the effective data rate is increased and decreases the time spent
transferring control packets which also blocks essential data communication. This increases
the data rate at the switch, so network performance is improved. Therefore, the primary
objective proposed in 1.3.1.2 was achieved. Also, the complex implementation of the test
system required different levels of implementation, but through the successful
implementation of both the fuzzing system and the decentralized federated learning system,
the secondary objectives proposed in 1.3.2.2 have also been achieved.

4.4. Results Dissemination

The results obtained in this chapter were disseminated in the following publication:

[118] S. Buzura, V. Dadarlat, B. Iancu, A. Peculea, E. Cebuc and R. Kovacs, "Self-adaptive Fuzzy
QoS Algorithm for a Distributed Control Plane with Application in SDWSN", 2020 IEEE
International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca,
Romania, 2020, pp. 1-6, doi: 10.1109/AQTR49680.2020.9129922

18

5. Improving the QoS by Addressing Security Risks

5.1. System Design

Figure 5.1 Proposed implementation in SDN architecture. The execution of the solution on the data plane switches is shown

Given the SDN architecture, it is important to note that the current solution operates in
the data plane and is implemented as an extension to OpenVSwitch. Figure 5.1 graphically
shows the location of the implementation relative to an SDN topology. This subchapter
presents the system that was implemented to demonstrate the concepts and the proposed
approach. Figure 5.2 shows the components of the solution behaving in a similar way to the
Linux pipeline architecture, where information is passed on from one process to another via a
pipe or a file. It is a sequential flow of operations, and each component generates output data
that is considered input data for the next component. Using this approach, each component is
easily replaced or enhanced, the only restriction being that the specific format constraints for
input and output data must be maintained.

Figure 5.2 The sequence of operations required to detect and mitigate attacks. The used components and possible

implementation alternatives are highlighted

19

Another important characteristic of this solution is that the sequence of operations is
executed in a loop with a configurable time interval. The time interval parameter is stored in a
configuration file which is read at run initialization. Thus, the solution is dynamic and
provides parameterization at runtime, not at compile time. This is useful if the switch needs to
be configured without recompiling any components. The configuration file also contains a
parameter for the severity level passed to the decision maker component. The severity level
can be used differently depending on the criticality level of the current network. Different
decisions can be triggered in case of detecting an attack depending on the business domain
where the network is used.

5.2. Practical Results

One important thing to point out is that the duration and mitigation time is actually the
time it takes for the solution to execute the entire loop. Consequently, the detection and
mitigation duration cannot be shorter than the execution of the solution. Therefore, the
minimum detection and mitigation time of the attack is given by the execution time of the
solution. As the experimental results demonstrate, the duration varies with the size of the
network and the level of congestion. For low traffic scenarios, the average detection and
mitigation time is approximately the same. However, as the number of network devices and
traffic both increase, the computation time increases exponentially, as shown in Figure 5.3.

Figure 5.3 Average time to detect and mitigate attacks in networks of different sizes with different levels of congestion. The figure
shows the exponential increase in duration as the number of devices in the network increases, but also as the level of congestion

increases

This behaviour is caused by the fact that low traffic generates fewer OpenVSwitch flow
entries, data that needs to be generated on the switch, which means that the next steps in the
sequence do not receive as much input data for processing and do not generate significant
additional processing time. As more traffic is generated, the required memory and computing
hardware resources also increase. For medium traffic volume scenarios, an increase in
detection and mitigation time is more noticeable as the network topology becomes more
complex. Comparing the ten-device network with the three-device network, the processing
time increases by 17.8%. Comparing the twenty-device network with the ten-device network,
processing time increases by 38.3%. Therefore, an important finding that can be deduced is
that, as more devices are in the network, the computational processing time increases

20

exponentially. In the case of high traffic volume scenarios, the increase in duration is again
noticeable, as in the previous case where there is an average traffic volume. Comparing the
ten-device network with the three-device network, the processing time increases by 63.9%.
Comparing the network of twenty devices with the network of ten devices, the processing
time increases by 73.3%. Again, a non-linear increase is visible, showing that the larger the
network is, the slower the solution becomes.

As for the proposed distributed MitM attack, its detection and mitigation requires
higher computational resources than the attack from a single device. The details presented
show the case where the ARP spoofing is only shared between two devices; however, this can
scale to multiple attackers being simultaneously coordinated. Since the detection must verify
all available network devices in tuples of K arguments, the complexity of the solution
increases to O(ˆK), n to the power of K, where n is the number of devices in the network and K
is the number of coordinated attackers. Of course, more optimizations can be performed, such
as marking some devices as trusted so that they are not inspected, thus reducing the
complexity, but this is beyond the scope of the current study.

5.3. Discussions and Conclusions

In later stages of development, more experimentation can be done by replacing
components in the plugin architecture and studying new components that have better
performance. System performance can be extended by monitoring only certain devices based
on their addresses, thus reducing the computation time, as fewer components will be
inspected. Another idea for further development on the physical layer of networks is to
perform tests in heterogeneous programmable networks where WiFi devices connect to a
switch via wireless access points. The proposed solution already supports this configuration,
as WiFi networks are processed identically to wired Ethernet networks (they have the same
Layer 2 header), but further study could be done in terms of the latency of signal conversions
in the physical layer (from radio waves to electrical signals), and an access point would allow
multiple devices to be connected in a given location. This study would provide more
information on the possibilities of implementing this solution in a real hardware environment.
Another idea for further development is to extend this concept to a distributed system. A
collaborative environment can be created in which different switches can share data on
known MAC addresses of attackers, so that an attacker can be more easily found in different
locations of the network. A collaborative environment can integrate artificial intelligence
techniques, such as federated learning, to detect attacks based on more complex traffic
patterns. Network traffic between Mininet devices was generated using the iPerf tool [119].

Further development of the current solution may overcome ideas of local complexity
through software and attempts to increase the performance of a single network device.
Therefore, future trials can be included in SDN architecture plans by using virtualization of
network functions through network hypervisors. The study presented in [120] presents
CoVisor, a network hypervisor that allows multiple control devices to coexist on the same
device and allows sharing their best features for optimizing network functionality. Libera is
also a network hypervisor that has the ability to create a dedicated network infrastructure for
managing specific network traffic [121]. Such hypervisors as CoVisor and Libera could be
used together to create a virtualized ecosystem that allows different policies and features to
be applied on different network infrastructures. A more concrete use case related to the
solution presented in this security article would be to implement different attack mitigation
strategies in different network infrastructures. Simultaneous testing and performance
measurement can take place in separately created network infrastructures, leading to a faster

21

method of deciding which is the best method for dealing with a specific attack. However, a
disadvantage that hypervisors can have in the context of security is that functionality is
moved to intermediate levels of the network, but attacks are always identified preferably as
close as possible to the source of the attack. Thus, for critical use cases, it is better to operate
at the edge of the network and not in the upper SDN layers after the information has already
been passed through many intermediate devices. In such a scenario, the use of a network
hypervisor is questionable and proper benchmarking and testing should be performed before
implementing a network infrastructure solution.

Another concept that can be used together with virtualised and programmable
ecosystems is that of application-specific programmable integrated circuits, in which
functions at the software level of the application are moved to the hardware layer of the
circuit. Thus, in theory, use cases that are implemented in the higher levels of the operating
system can be moved to the hardware. Used together with the advantages offered by a
network hypervisor, dynamic programmability can be configured in different network
locations.

Software-defined networks have the advantage of being programmable and allow the
development of many particular network use cases. In this regard, the current solution has
focused on creating an extendable software architecture that can detect and mitigate attacks
based on ARP spoofing techniques in Ethernet networks created in Mininet. The solution is
built on the Linux pipeline architecture and a plugin system, in which a sequence of
operations is mandatory. The sequence of operations contains different modules for data
acquisition, relevant data extraction, data analysis and decision making. Each of the
components is replaceable using a configuration file and, depending on the network use cases
and desired severity levels, different actions can be taken upon attack detection. The fact that
the components are replaceable allows the system to be easily extendable and configurable.

In conclusion, the main objective defined in 1.3.1.3. was achieved by improving
network performance through detection and mitigation of security risks in software-defined
networks and the desired effect of increasing the speed of essential data traffic has also been
successfully achieved. The secondary objectives defined in 1.3.2.3. were also fully achieved
through the following aspects: malicious traffic of ARP spoofing attacks was analysed in detail
by performing MitM ARP spoofing attacks using the Ettercap utility in KaliLinux; the
OpenVSwitch solution was extended with the ability to detect and mitigate ARP spoofing
attacks; the metric for performance verification was chosen as the speed of data plane
transfer of essential data.

5.4. Results Dissemination

The results obtained in this chapter were disseminated in the following publication:

[122] S. Buzura, M. Lehene, B. Iancu, V. Dadarlat "An Extendable Software Architecture for
Mitigating ARP Spoofing-Based Attacks in SDN Data Plane Layer", Electronics 2022, 11, 1965.
doi: https://doi.org/10.3390/electronics11131965 IF 2.69 Q3

22

6. Development of a Framework for Software-Defined

Networking Simulations

6.1. The Framework in the Context of the Proposed Objectives

Figure 6.1 The framework used in the context of the proposed objectives in this PhD thesis

For the finality of this PhD thesis it is also necessary to incorporate the solutions of the
main proposed objectives for the finality of the thesis into the same network. Thus, Figure 6.1
shows how all these solutions can be merged into a single test topology. The following
components are identified: A Kali Linux operating system that is required to perform the
MitM attack; the Mininet-WiFi emulator installed within the virtual machine that uses the Kali
Linux operating system, it is important to remember that Mininet-WiFi contains both the
wireless protocol extensions and the basic functionality provided by Mininet; the control
devices are added to the Mininet network and are referenced by IP address, this means that it
is not required to run the control solutions on the same operating system where the Mininet
instance is running and in this case, they will be executed from the host machine using a
Windows operating system where the Matlab exported machine learning library can be used;
the wireless nodes that make up a sensor network are attached to switch s1, they can be
coordinated to send or not send data depending on the cache-based optimization solution.
Having said that, the framework is validated for use in simulation contexts with
heterogeneous and interdisciplinary technologies and provides a complete solution in the

23

possibilities of studying the behavior of programmable networks addressing both QoS and
security topics, offering numerous possibilities to study the proposed contributions to
improve the performance of software-defined networks.

6.2. Testing Environment

At this point it is important to reiterate that the main objective of this chapter is to
provide architectural and implementation details on how to build a hybrid environment with
software and hardware simulation components. The experimental work is limited to the
design for portability, as this context of use is the only experiment that can provide accurate
and reusable measurement values for the literature. This is because the OpenFlow packets
that are used in this experiment are transmitted over LAN and WAN network types that are
commonly used in modern networks. Designs for scalability, parallel computations, and
software update delivery depend heavily on the hardware resources of the Linux machine
running Mininet and Mininet-WiFi, which are subjective from the perspective of the current
work. In order to simulate the above design ideas, the required components are shown in
Figure 6.2. The configuration consists of a PC running a Linux operating system, on which
Mininet and Mininet-WiFi were installed, hardware components, which were attached
directly to the PC via USB interfaces (Ubertooth One and Libelium Waspmote sensor) and an
Ethernet interface (Toradex i.MX6 board). The advantage of the approach proposed above for
duplicating traffic and simultaneously reading multiple data from multiple hardware devices
is the possibility to extend it to large-scale simulations, where only one sensor of each type
can be used. This drastically reduces the cost of simulation and implementation time.

Figure 6.2 Components used to create the hybrid software and hardware framework for the proposed simulations

24

6.3. Discussions and Conclusions

The result of the research work that was in this chapter has created a hybrid software
and hardware simulation framework for network testing. Four main design ideas were used,
namely: design for scalability, design for parallel computation, design for portability, and
design for software update on nodes of a wireless sensor network. These design ideas provide
the possibility to test the system in different use cases. The use contexts presented in the
paper are: data collection from sensors in a WSN, network security, comparative testing of
different placement locations of SDN control devices, and the delivery of software updates in
an SDN environment. The SDN test system that has been implemented contains contributions
in the data plane and the control plane. The ultimate goal of using the SDN paradigm is to
bring benefits to the application plane, which are visible from the improvements made in the
lower SDN planes. To validate the proposed hardware software hybrid simulation approach,
measurements were performed in the scenario designed for portability. The goal was to study
the effect of positioning an SDN control device in different locations in the LAN containing the
data plane, but also in a different location in the Internet. The results showed that the impact
of data transfer between the data plane switch and the SDN control device is negligible when
the SDN control device is located in the same LAN (regardless of the number of intermediate
switches), but data transfer is significantly slower when the SDN control device is located in a
different Layer 3 network.

The main novelty proposed to introduce real-time reading of sensor data is limited to a
number of sensors equal to the number of interfaces available on the computer, thus deducing
the exact number of hardware devices that can connect to Mininet. These interfaces include
the following: USB, serial, Bluetooth, etc. The number of available interfaces can be increased
somewhat by adding external adapters or USB hubs that allow more devices to be connected.
However, this number remains limited, and reading data from multiple interfaces consumes
other hardware resources (processor processing power and available memory) that are
needed for experimental calculations. As far as measurements on OpenFlow packets are
concerned, they were performed only on the OpenFlow packet_in, which has a size between
approximately 600 and 1400 bytes. The OpenFlow packet packet_in contains the Ethernet
frame for which the request is made, plus a few additional bytes that are specific to the
OpenFlow protocol. With a reduced packet size, the transmission times will have
approximately similar values. To create a complete evaluation, the entire OpenFlow set of
packet types could be measured for data transmission. Interpreting the results presented, the
variation in transfer time is small, and this is due to the fact that OpenFlow is an application-
level protocol running over TCP. Establishing a connection takes up a considerable part of this
transmission time with the three-step TCP handshake.

Considering the wide range of SDN domain applications and large-scale environments,
creating a real test environment is a complex and costly task. To address this limitation, a
hybrid software and hardware simulation framework was proposed. By integrating simulated
data with real-time sensor data (from hardware devices) in a Mininet emulator, realistic
simulations were generated and validated in different real use cases. In addition, new datasets
can be easily generated for specific scenarios by saving the data captured from real-time
sensors. The newly generated datasets and scenarios can be easily replicated in other
research projects, thus contributing to the body of science.

In conclusion, the main objective defined in 1.3.1.4. was achieved by improving the
performance of software-defined networks, allowing the creation of complete simulation
scenarios that can concurrently test different functionalities using hardware devices. The sub-
objectives defined in 1.3.2.4. were also fully achieved through the following aspects: the

25

heterogeneity of software-defined networks is highlighted by the hybrid framework
combining different software solutions with different hardware devices; different
programmability concepts in different programming languages have been used to create the
framework; programmable networks have been addressed from all architectural planes;
different networks created in Mininet and Mininet-WiFi have been extended with data read in
real time from hardware devices; protocols from all levels of the TCP/IP protocol stack have
been used in the development of the framework, thus providing a complete solution for the
created framework.

6.4. Results Dissemination

The work developed in this chapter was disseminated in the following publications:

[123] S. Buzura, A. Peculea, B. Iancu, E. Cebuc, V. Dadarlat, R. Kovacs "A Hybrid Software and
Hardware SDN Simulation Testbed", Sensors 2023, 23, 490.
https://doi.org/10.3390/s23010490 IF: 3.847 Q2

[124] S. Buzura, V. Lazar, B. Iancu, A. Peculea and V. Dadarlat, "Using Software-Defined
Networking Technology for Delivering Software Updates to Wireless Sensor Networks," 2021
20th RoEduNet Conference: Networking in Education and Research (RoEduNet), Iasi,
Romania, 2021, pp. 1-6, doi: 10.1109/RoEduNet54112.2021.9637720.

[125] S. Buzura, V. Dadarlat, A. Peculea, H. Bertrand and R. Chevalier, "Simulation Framework
for 6LoWPAN Networks Using Mininet-WiFi," 2022 IEEE International Conference on
Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 2022, pp. 1-5, doi:
10.1109/AQTR55203.2022.9802017.

[126] S. Buzura, A. Suciu, E. Cebuc, B. Iancu and V. Dadarlat, "Development Framework for
Simulating Routing Behavior in Software-Defined Wireless Networks," 2022 21st RoEduNet
Conference: Networking in Education and Research (RoEduNet), Sovata, Romania, 2022, pp.
1-6, doi: 10.1109/RoEduNet57163.2022.9921101.

26

7. Conclusions

7.1. General Conclusions

This PhD thesis provides a development framework in the areas of traffic engineering,
collaborative systems development, artificial intelligence and security, with applicability in
software-defined networking. Personal contributions have been implemented at all levels of
programmable networks, with the ultimate goal of improving the QoS provided by such
systems. The resulting framework provides a complete solution for conducting research
studies in software-defined networks using the aforementioned areas.

The field of computer networks is an interdisciplinary field where different notions of
programmability, management and security often overlap in research. Because of this, a very
good theoretical understanding of these areas is required, but relevant practical experience is
also needed to develop solutions and conduct research studies in the field of computer
networks. For this reason, the complexity of the field and consequently of the current thesis,
does not only have specific technical features of local implementation of the proposed
functionalities but also has a complex overview of integrating interdisciplinary concepts with
the role of finding compatibility between them.

Regarding the manner in which the presents results of this PhD thesis were achieved, it
is important to mention that some of the research topics were carried out over a long period
of time, even over several years, until the results were successfully disseminated. The
processes used were incremental with different collaborators (co-authors of the published
articles) and the way of working was published in [127] at an educational conference.
Continuing this educational theme, the laboratory activities for the Computer Networks
subject (in the English teaching language) were also updated with topics studied and
practically experienced during this PhD thesis. Thus, for the laboratory activities document
referenced in [128], two completely new papers on socket programming and ARP spoofing
attacks were added to prepare students both with general technical notions and for various
research topics.

7.2. Originality and Innovative Contributions of the Thesis

Chapter 3 on traffic engineering proposed a contribution to performance improvement
in SDWSNs. In this context, performance improvement refers to improving energy efficiency
and increasing network lifetime. Energy efficiency in an SDWSN has been improved through
the use of transmitted data content analysis techniques and adaptive broadcast data
transmission. Energy efficiency is improved by reducing the number of packets transmitted in
the software-defined network data plane. The content analysis technique was implemented at
the level of individual programmable sensors in the data plane, where hardware resources are
limited on network devices. In the final solution, adaptive data transmission is moved to the
control plane and replaces data transmission in the data plane. The implemented system
increases the network lifetime as the number of packets in the WSN layer is reduced, thus
improving QoS by reducing traffic volume and avoiding congestion. QoE is improved by
proactively forwarding data from the control plane to the application plane. Thus, the main
objective proposed in 1.3.1.1 was achieved. The secondary objectives proposed in 1.3.2.1.
were also achieved.

27

Chapter 4 with the topic of implementing a distributed and collaborative control
scheme proposed a contribution to a more efficient definition of OpenFlow switching rules. In
this context, performance improvement refers to reducing control traffic in the network, thus
favouring essential data traffic and consequently increasing the throughput of essential data.
The proposed problem was solved in two ways, using fuzzing technique and using
decentralized federated learning technique. Both techniques have a positive result by
reducing the control traffic in the network, but an advantage can be mentioned in favor of the
federated learning technique, namely, that the generated rules better adjust to the actual
traffic duration, and these rules do not remain active during traffic-free periods. Thus, the
main objective proposed in 1.3.1.2. were achieved. The secondary objectives proposed in
1.3.2.2. were also achieved.

Chapter 5 concerning security proposes contributions to improve QoS in an SDN by
removing malicious traffic from the network, thus increasing the relevant data traffic
transmitted. Performance is thus improved by increasing the transmission speed of essential
data. A solution for detecting and mitigating ARP spoofing attacks in the data plane of an SDN
was implemented. The proposed software architecture is able to accommodate different
operating environments (based on OpenVSwitch, npcap, etc.) and can integrate multiple
software technologies for data processing. The implementation of the solution is done strictly
in the data plane of an SDN without interaction with the control plane. The implemented
solution was evaluated in networks of different sizes and with different levels of congestion,
and the evaluation also shows the impact the solution has on the volume of data transmitted
over the network in scenarios with and without the MitM attack running. Finally, a new
distributed ARP spoofing attack is conceptualized and a behavioural analysis of the attacker's
actions is performed. A solution for this new type of attack is also provided, thus offering a
novelty with respect to the current state of knowledge. Thus, the main objective proposed in
1.3.1.3. was achieved. The secondary objectives proposed in 1.3.2.3. were achieved.

Chapter 6 concerning the creation of a framework that incorporates all the previous
contributions proposes implementation software contributions for the simulation of
software-defined networks. Various programming languages and socket programming
techniques are used in Windows and Linux operating systems, but also in networks created
using Mininet and Mininet-WiFi emulators. Different networking use cases are explored, such
as: simulating large-scale networks; updating software on production-installed sensors
without having wired access to them; simulating routing techniques in SDWSN; simulations
for testing different algorithms in parallel on the same data; test scenarios for portability.
Tests are carried out in networks with different constraints, such as: IPv4 wired networks;
IPv6/6LowPan unwired networks; networks using services provided by the IPFS distributed
system; networks extending the OpenFlow protocol and software solutions using this
protocol, the Pox solution. Finally, a hybrid simulation environment is proposed using
networks built in Mininet and Mininet-WiFi, which are extended with real-time data received
from sensors physically connected to the host computer through different interfaces (USB,
serial). All these contributions demonstrate the flexibility and heterogeneity of the SDN
paradigm. The developed software simulation environments can be easily extended in the
future to further studies in the field of programmable networks. These contributions also
provide more implementation details, which are often missing in scientific works in the
literature, but are necessary for the replication of studies and their validation. Thus, the main
objective proposed in 1.3.1.4. was achieved. The secondary objectives proposed in 1.3.2.4.
were also achieved.

In conclusion, the proposed objectives were achieved through the performed research
work.

28

7.3. Further Development

Software-defined networks have gained popularity especially in datacenter or campus
networks. A newer context is the use of the SDN paradigm in WANs, creating the SD-WAN
topology. A possible further development is the creation of a framework based on the
Mininet-Optical emulator which, in addition to the features of an SDN, also includes a
simulator of the physical processes of data transmission over optical fibre. Different studies
can be done with different parameters both at the upper levels of the TCP/IP protocol stack
(network, Internet and application levels) and at the lower level of access to the environment.
Thus, different test topologies can be created to serve different research studies in different
application domains.

Another possible further development is in the area of security, namely checking the
susceptibility of devices in an SDN to various attacks, such as the Nethammer attack [129],
which is actually the Rowhammer attack caused by a high volume of data traffic received from
the network. This attack primarily involves a software solution that reads data received from
the network interface into the same memory area (identified by a pointer). And secondly, the
hardware device running this software solution must be using a type of RAM memory that is
susceptible to this attack (a memory that does not completely isolate electromagnetic
interference between transistors). Further study would involve investigating different SDN
solutions and performing stress and penetration tests on them to cause the attack to occur.
SDN solutions that provide access to source code can be further analysed and understood for
how they read incoming data from the network. If such vulnerabilities are found, solutions
can be proposed for remediation, which will lead to improvements in the quality offered by
existing solutions. For a better understanding of these vulnerabilities the practical
applications in [130] and [131] can be studied, they detail the processes that take place at the
hardware level.

29

REFERENCES

[1] L. Peterson, C. Cascone, B. O’Connor, T. Vachuska, and B. Davie, Software-Defined
Networks: A Systems Approach. Available at: https://sdn.systemsapproach.org/index.html
(accessed on 01.03.2020)

[2] SDN standard specified in RFC 7426 „Software-Defined Networking (SDN): Layers and
Architecture Terminology”. Available at: https://datatracker.ietf.org/doc/html/rfc7426
(accessed on 01.03.2020)

[3] Nam, H.; Kim, K.-H.; Kim, J.Y.; Schulzrinne, H. Towards QoE-aware video streaming using
SDN. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–
12 December 2014

[4] Ezdiani, S.; Acharyya, I.S.; Sivakumar, S.; Al-Anbuky, A. Wireless Sensor Network
Softwarization: Towards WSN Adaptive QoS. IEEE Internet Things J. 2017, 4, 1517–1527

[5] Benzekki, K.; El Fergougui, A.; Elbelrhiti Elalaoui, A. Software-defined networking (SDN): A
survey. Secur. Commun. Netw. 2016, 9, 5803–5833

[6] Misra, S.; Bera, S.; Achuthananda, M.P.; Pal, S.K.; Obaidat, M.S. Situation-Aware Protocol
Switching in Software-Defined Wireless Sensor Network Systems. IEEE Syst. J. 2017, 12, 1–8

[7] Kadel, R.; Ahmed, K.; Nepal, A. Adaptive error control code implementation framework for
software defined wireless sensor network (SDWSN). In Proceedings of the 2017 27th
International Telecommunication Networks and Applications Conference (ITNAC),
Melbourne, VIC, Australia, 22–24 November 2017

[8] McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.;
Shenker, S.; Turner, J. OpenFlow: Enabling innovation in campus networks. Comput. Commun.
Rev. 2008, 38, 69–74

[9] Xiang, W.; Wang, N.; Zhou, Y. An Energy-Efficient Routing Algorithm for Software-Defined
Wireless Sensor Networks. IEEE Sens. J. 2016, 16, 7393–7400

[10] Alam, M.M.; Berder, O.; Menard, D.; Sentieys, O. Traffic-aware adaptive wake-up-interval
for preamble sampling MAC protocols of WSN. In Proceedings of the Third International
Workshop on Cross Layer Design, Rennes, France, 30 November–1 December 2011

[11] Liu, D.; Chen, B.; Yang, C.; Molisch, A.F. Caching at the wireless edge: Design aspects,
challenges, and future directions. IEEE Commun. Mag. 2016, 54, 22–28

[12] Lei, F.; Cai, J.; Dai, Q.; Zhao, H. Deep Learning Based Proactive Caching for Effective WSN-
Enabled Vision Applications. Complexity 2019, 1–12

[13] Hu, W.; Qiu, Z.; Wang, H.; Yan, L. A Real-time scheduling algorithm for on-demand
wireless XML data broadcasting. J. Netw. Comput. Appl. 2016, 68, 151–163

30

[14] Wei, Y.; Ma, X.; Yang, N.; Chen, Y. Energy-Saving Traffic Scheduling in Hybrid Software
Defined Wireless Rechargeable Sensor Networks. Sensors 2017, 17, 2126

[15] Li, G.; Guo, S.; Yang, Y.; Yang, Y. Traffic Load Minimization in Software Defined Wireless
Sensor Networks. IEEE Internet Things J. 2018, 5, 1370–1378

[16] Modares, H.; Salleh, R.; Moravejosharieh, A. Overview of Security Issues in Wireless
Sensor Networks. In Proceedings of the Third International Conference on Computational
Intelligence, Modelling & Simulation, Langkawi, Malaysia, 20–22 September 2011

[17] Sadowski, C.; Levin, G. Simhash: Hash-Based Similarity Detection; Technical Report,
Google; University of California: Santa Cruz, CA, USA, 2007

[18] Wang, Z.; Zhang, M.; Gao, X.; Wang, W.; Li, X. A clustering WSN routing protocol based on
node energy and multipath. Clust. Comput. 2017, 22

[19] Abbasi, A.A.; Younis, M. A survey on clustering algorithms for wireless sensor networks.
Comput. Commun. 2007, 30, 2826–2841

[20] Xu, L.; Collier, R.; O’Hare, G. A Survey of Clustering Techniques in WSNs and
Consideration of the Challenges of Applying Such to 5G IoT Scenarios. IEEE Internet Things J.
2017, 4, 1229–1249

[21] Townsend, L. Wireless Sensor Network Clustering with Machine Learning. Ph.D. Thesis,
Nova Southeastern University, Fort Lauderdale, FL, USA, 2018

[22] M. Karakus, and A. Durresi, “Quality of Service (QoS) in Software Defined Networking
(SDN): A survey”, Journal of Network and Computer Applications. 80, 2016,
10.1016/j.jnca.2016.12.019

[23] Adam Zarek, OpenFlow Timeouts Demystified, University of Toronto, Toronto, Ontario,
Canada, 2012

[24] V. M. Vishnu, P. Manjunath, “SeC-SDWSN: Secure cluster-based SDWSN environment for
QoS guaranteed routing in three-tier architecture”, International Journal of Communication
Systems, e4020, 2019, doi:10.1002/dac.4020

[25] Manzanares-Lopez, P.; Malgosa-Sanahuja, J.; Muñoz-Gea, J.P. A Software-Defined
Networking Framework to Provide Dynamic QoS Management in IEEE 802.11 Networks.
Sensors 2018, 18, 2247

[26] B. T. de Oliveira and C. B. Margi, "Distributed control plane architecture for software-
defined Wireless Sensor Networks," 2016 IEEE International Symposium on Consumer
Electronics (ISCE), Sao Paulo, 2016, pp. 85-86.doi: 10.1109/ISCE.2016.7797384

[27] Oktian, Y. E., Lee, S., Lee, H., & Lam, J. (2017). Distributed SDN controller system: A survey
on design choice. Computer Networks, 121, 100–111. doi:10.1016/j.comnet.2017.04.038

31

[28] S. T. V. Pasca, S. S. P. Kodali and K. Kataoka, “AMPS: Application aware multipath flow
routing using machine learning in SDN”, Twenty-third National Conference on
Communications (NCC), Chennai, 2017, pp. 1-6. doi: 10.1109/NCC.2017.8077095

[29] J. Liu and Q. Xu, "Machine Learning in Software Defined Network," 2019 IEEE 3rd
Information Technology, Networking, Electronic and Automation Control Conference (ITNEC),
Chengdu, China, 2019, pp. 1114-1120. doi: 10.1109/ITNEC.2019.8729331

[30] R. Thupae, B. Isong, N. Gasela and A. M. Abu-Mahfouz, "Machine Learning Techniques for
Traffic Identification and Classification in SDWSN: A Survey," IECON 2018 - 44th Annual
Conference of the IEEE Industrial Electronics Society, Washington, DC, 2018, pp. 4645-4650.
doi: 10.1109/IECON.2018.8591178

[31] B. Letswamotse, K. Modieginyane and R. Malekian, “SDN Based QoS Provision in WSN
Technologies”, arXiv 2017, arXiv:abs/1702.08164

[32] P. Wang, S. Lin and M. Luo, "cs," 2016 IEEE International Conference on Services
Computing (SCC), San Francisco, CA, 2016, pp. 760-765. doi: 10.1109/SCC.2016.133

[33] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Rellermeyer, “A
survey on distributed machine learning,” arXiv preprint arXiv:1912.09789, 2019

[34] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-
efficient learning of deep networks from decentralized data” 2016, arXiv:1602.05629.
Available at: https://arxiv.org/abs/1602.05629 (accessed on 01.06.2020)

[35] Zhang Y., Zhang X., Li X. (2021) Towards Efficient and Privacy-Preserving Service QoS
Prediction with Federated Learning. In: Gao H., Wang X., Iqbal M., Yin Y., Yin J., Gu N. (eds)
Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2020.
Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol 350. Springer, Cham

[36] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept and
applications. ACM TIST, 10(2):12:1–12:19, 2019

[37] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree
Anandkumar. signSGD: Compressed optimisation for non-convex problems. In International
Conference on Machine Learning, pages 560–569, 2018

[38] F. Sattler, S. Wiedemann, K. -R. Müller and W. Samek, "Robust and Communication-
Efficient Federated Learning From Non-i.i.d. Data," in IEEE Transactions on Neural Networks
and Learning Systems, vol. 31, no. 9, pp. 3400-3413, Sept. 2020, doi:
10.1109/TNNLS.2019.2944481

[39] A. Sacco, F. Esposito and G. Marchetto, "A Federated Learning Approach to Routing in
Challenged SDN-Enabled Edge Networks," 2020 6th IEEE Conference on Network
Softwarization (NetSoft), Ghent, Belgium, 2020, pp. 150-154,
doi:10.1109/NetSoft48620.2020.9165506

32

[40] Xu, C.; Mao, Y. An Improved Traffic Congestion Monitoring System Based on Federated
Learning. Information 2020, 11, 365

[41] Mun, H.; Lee, Y. Internet Traffic Classification with Federated Learning. Electronics 2021,
10, 27

[42] OpenFlow protocol. Specifications available at: https://opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf (accessed on 01.06.2020)

[43] E. Kim, S. Lee, Y. Choi, M. Shin and H. Kim, "A flow entry management scheme for
reducing controller overhead," 16th International Conference on Advanced Communication
Technology, Pyeongchang, 2014, pp. 754-757. doi: 10.1109/ICACT.2014.6779063

[44] A. V. Atli, M. S. Uluderya, S. Tatlicioglu, B. Gorkemli and A. M. Balci, "Protecting SDN
controller with per-flow buffering inside OpenFlow switches," 2017 IEEE International Black
Sea Conference on Communications and Networking (BlackSeaCom), Istanbul, 2017, pp. 1-5,
doi: 10.1109/BlackSeaCom.2017.8277662

[45] H. I. Kobo, G. P. Hancke and A. M. Abu-Mahfouz, "Towards a distributed control system
for software defined Wireless Sensor Networks," IECON 2017 - 43rd Annual Conference of the
IEEE Industrial Electronics Society, Beijing, 2017, pp. 6125-6130. Doi:
10.1109/IECON.2017.8217064

[46] Huang, S.; Griffioen, J. Network Hypervisors: Managing the Emerging SDN Chaos. In
Proceedings of the 2013 22nd International Conference on Computer Communication and
Networks (ICCCN), Nassau, Bahamas, 30 July–2 August 2013; IEEE: Piscataway, NJ, USA, 2013;
pp. 1–7

[47] Chica, J.C.; Imbachi, J.C.; Botero Vega, J.F. Security in SDN: A Comprehensive Survey. J.
Netw. Comput. Appl. 2020, 159, 102595

[48] Mallik, A.; Ahsan, A.; Shahadat, M.M.Z.; Tsou, J.-C. Man-In-The-Middle-Attack:
Understanding in Simple Words. Int. J. Data Netw. Sci. 2019, 3, 77–92

[49] Shah, Z.; Cosgrove, S. Mitigating ARP Cache Poisoning Attack in Software-Defined
Networking (SDN): A Survey. Electronics 2019, 8, 1095

[50] Nehra, A.; Tripathi, M.; Gaur, M.S. FICUR: Employing SDN Programmability to Secure ARP.
In Proceedings of the 2017 IEEE 7th Annual Computing and Communication Workshop and
Conference (CCWC), Las Vegas, NV, USA, 9–11 January 2017; pp. 1–8

[51] Furukawa, M.; Kuroda, K.; Ogawa, T.; Miyaho, N. Highly secure communication service
architecture using SDN switch. In Proceedings of the 2015 10th Asia-Pacific Symposium on
Information and Telecommunication Technologies (APSITT), Colombo, Sri Lanka, 22–25
September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–3

[52] Solomon, N. Mitigating Layer 2 Attacks: Re-Thinking the Division of Labor. Master’s
Thesis, School of Computer Science, The Interdisciplinary Center, Reichman University,
Herzliya, Israel, 2015

33

[53] Al-Somaidai, M.B. Survey of Software Components to Emulate OpenFlow Protocol as an
SDN Implementation. Am. J. Softw. Eng. Appl. 2014, 3, 74

[54] Dhawan, M.; Poddar, R.; Mahajan, K.; Mann, V. SPHINX: Detecting Security Attacks in
Software-Defined Networks. In Proceedings of the Network and Distributed System Security
Symposium, San Diego, CA, USA, 8–11 February 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 8–
11

[55] Hareesh, I.; Prasanna, S.; Vijayalakshmi, M.; Shalinie, S.M. Anomaly detection system
based on analysis of packet header and payload histograms. In Proceedings of the 2011
International Conference on Recent Trends in Information Technology (ICRTIT), Chennai,
India, 3–5 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 412–416

[56] Girdler, T.; Vassilakis, V.G. Implementing an Intrusion Detection and Prevention System
Using Software-Defined Networking: Defending against ARP Spoofing Attacks and Blacklisted
MAC Addresses. Comput. Electr. Eng. 2021, 90, 106990

[57] Munther, M.N.; Hashim, F.; Abdul Latiff, N.A.; Alezabi, K.A.; Liew, J.T. Scalable and Secure
SDN Based Ethernet Architecture by Suppressing Broadcast Traffic. Egypt. Inform. J. 2021, 23,
113–126

[58] Shaghaghi, A.; Kaafar, M.A.; Buyya, R.; Jha, S. Software-defined network (SDN) data plane
security: Issues, solutions, and future directions. In Handbook of Computer Networks and
Cyber Security; Gupta, B., Perez, G., Agrawal, D., Gupta, D., Eds.; Springer: Cham, Switzerland,
2020; pp. 341–387.

[59] Rangisetti, A.K.; Dwivedi, R.; Singh, P. Denial of ARP Spoofing in SDN and NFV Enabled
Cloud-Fog-Edge Platforms. Clust. Comput. 2021, 24, 3147–3172

[60] Open Floodlight SDN controller. Available at:
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview (accessed on
17.05.2021)

[61] Lin, T.-Y.; Wu, J.-P.; Hung, P.-H.; Shao, C.-H.; Wang, Y.-T.; Cai, Y.-Z.; Tsai, M.-H. Mitigating
SYN flooding Attack and ARP Spoofing in SDN Data Plane. In Proceedings of the 2020 21st
Asia-Pacific Network Operations and Management Symposium (APNOMS), Daegu, Korea, 22–
25 September 2020; pp. 114–119

[62] Ryu SDN controller. Available at: https://ryu-sdn.org/ (accessed on 17.05.2021)

[63] Amin, A.A.M.M.; Mahamud, M.S. An Alternative Approach of Mitigating ARP Based Man-
in-the-Middle Attack Using Client Site Bash Script. In Proceedings of the 2019 6th
International Conference on Electrical and Electronics Engineering (ICEEE), Istanbul, Turkey,
16–17 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 112–115

[64] Yang, G.; Shin, C.; Yoo, Y.; Yoo, C. A Case for SDN-based Network Virtualization. In
Proceedings of the 29th International Symposium on Modeling, Analysis, and Simulation of

34

Computer and Telecommunication Systems (MASCOTS), Houston, TX, USA, 3–5 November
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8

[65] Mininet network emulator. Available at: http://mininet.org (accessed on 01.03.2020)

[66] Fontes, R.R.; Afzal, S.; Brito, S.H.B.; Santos, M.A.S.; Rothenberg, C.E. Mininet-WiFi:
Emulating Software-defined Wireless Networks. In Proceedings of the 2015 11th
International Conference on Network and Service Management (CNSM), Barcelona, Spain, 9–
13 November 2015; pp. 384–389

[67] Mininet-Optical emulator. Avilable at: https://mininet-optical.org/ (accessed on
11.06.2022)

[68] R. Nagarathna and S. M. Shalinie, "SLAMHHA: A supervised learning approach to mitigate
host location hijacking attack on SDN controllers," 2017 Fourth International Conference on
Signal Processing, Communication and Networking (ICSCN), 2017, pp. 1-7, doi:
10.1109/ICSCN.2017.8085680

[69] POX SDN controller. Available at: https://noxrepo.github.io/pox-doc/html (accessed on
17.05.2021)

[70] A. Bumb, B. Iancu and E. Cebuc, "Extending Cooja simulator with real weather and soil
data," 2018 17th RoEduNet Conference: Networking in Education and Research (RoEduNet),
2018, pp. 1-5, doi: 10.1109/ROEDUNET.2018.8514130

[71] Cooja network simulator. Available at: https://github.com/contiki-os/contiki/wiki/An-
Introduction-to-Cooja (accessed on 17.05.2021)

[72] H. A. A. Al-Kashoash, M. Hafeez and A. H. Kemp, "Congestion Control for 6LoWPAN
Networks: A Game Theoretic Framework," in IEEE Internet of Things Journal, vol. 4, no. 3, pp.
760-771, June 2017, doi: 10.1109/JIOT.2017.2666269

[73] A. HAKA, R. VASILEV, V. ALEKSIEVA and H. VALCHANOV, "Simulation Framework for
Building of 6LoWPAN Network," 2019 16th Conference on Electrical Machines, Drives and
Power Systems (ELMA), 2019, pp. 1-5, doi: 10.1109/ELMA.2019.8771633

[74] F. F. J. Lasso, K. Clarke and A. Nirmalathas, "A software-defined networking framework
for IoT based on 6LoWPAN," 2018 Wireless Telecommunications Symposium (WTS), 2018,
pp. 1-7, doi: 10.1109/WTS.2018.8363938

[75] Younus, M.U.; Islam, S.u.; Kim, S.W. Proposition and Real-Time Implementation of an
Energy-Aware Routing Protocol for a Soft-ware Defined Wireless Sensor Network. Sensors
2019, 19, 2739

[76] S. Buzura, V. Dadarlat, A. Peculea, B. Iancu and E. Cebuc, "Simulations framework for
network congestion avoidance algorithms using the OMNeT++ IDE," 2013 11th RoEduNet
International Conference, 2013, pp. 1-8, doi: 10.1109/RoEduNet.2013.6511758

35

[77] OMNeT++ network simulator. Available at: https://omnetpp.org/ (accessed on
17.05.2021)

[78] Lunagariya, D.; Goswami, B. A Comparative Performance Analysis of Stellar SDN
Controllers using Emulators. In Proceedings of the 2021 International Conference on
Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT),
Bhilai, India, 19–20 February 2021; pp. 1–9

[79] Kazi, N.M.; Suralkar, S.R.; Bhadade, U.S. Evaluating the Performance of POX and RYU SDN
Controllers Using Mininet. In Communications in Computer and Information Science Book
Series (CCIS, Volume 1483); Venugopal, K.R., Shenoy, P.D., Buyya, R., Patnaik, L.M., Iyengar,
S.S., Eds.; Springer: Cham, Switzerland, 2021; Volume 1483, pp. 181–191

[80] Cui, X.; Huang, X.; Ma, Y.; Meng, Q. A Load Balancing Routing Mechanism Based on SDWSN
in Smart City. Electronics 2019, 8, 273

[81] J. Izquierdo-Zaragoza, A. Fernandez-Gambin, J. Pedreno-Manresa and P. Pavon-Marino,
”Leveraging Net2Plan planning tool for network orchestration in OpenDaylight,” 2014
International Conference on Smart Communications in Network Technologies (SaCoNeT),
2014, pp. 1-6, doi: 10.1109/SaCoNeT.2014.6867770

[82] Net2Plan tool. Available at: http://www.net2plan.com/ (accessed on 06.03.2022)

[83] Haseeb, K.; Ud Din, I.; Almogren, A.; Islam, N. An Energy Efficient and Secure IoT-Based
WSN Framework: An Application to Smart Agriculture. Sensors 2020, 20, 2081

[84] M. S. Hossen, M. H. Rahman, M. Al-Mustanjid, M. A. Shakil Nobin and M. A. Habib,
”Enhancing Quality of Service in SDN based on Multi-path Routing Optimization with DFS,”
2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), 2019, pp.
1-5, doi: 10.1109/STI47673.2019.9068057

[85] Npcap software library for the C and C++ programming languages. Available at:
https://npcap.com/ (accessed on 06.03.2022)

[86] SharpPcap software library for the C# programming language. Available at:
https://www.nuget.org/packages/SharpPcap (accessed on 06.03.2022)

[87] Pcap4J software library for the Java programming language. Available at:
https://www.pcap4j.org/ (accessed on 06.03.2022)

[88] jNetPcap software library for the Java programming language. Available at:
https://www.jnetpcap.com/ (accessed on 06.03.2022)

[89] S. B. Bose and S. S. Sujatha, ”Fuzzy Logic based QoS Management and Monitoring System
for Cloud Computing”, 2020 3rd International Conference on Intelligent Sustainable Systems
(ICISS), 2020, pp. 920-924, doi: 10.1109/ICISS49785.2020.9315874

[90] Bosmans, S.; Mercelis, S.; Denil, J.; Hellinckx, P. Testing IoT Systems Using a Hybrid
Simulation Based Testing Approach. Computing 2018, 101, 857–872

36

[91] Ulbricht, M.; Acevedo, J.; Krdoyan, S.; Fitzek, F.H.P. Emulation vs. Reality:
Hardware/Software Co-Design in Emulated and Real Time-sensitive Networks. In
Proceedings of the European Wireless 2021 26th European Wireless Conference, Verona,
Italy, 10–12 November 2021; pp. 1–7

[92] Tang, J.; Chen, X.; Zhu, X.; Zhu, F. Dynamic Reallocation Model of Multiple Unmanned
Aerial Vehicle Tasks in Emergent Adjustment Scenarios. IEEE Trans. Aerosp. Electron. Syst.
2022, 1–43

[93] Huang, T.; Yu, F.R.; Zhang, C.; Liu, J.; Zhang, J.; Liu, Y. A Survey on Large-Scale Software
Defined Networking (SDN) Testbeds: Approaches and Challenges. IEEE Commun. Surv. Tutor.
2017, 19, 891–917

[94] Zhao, Z.; Wu, B. Scalable SDN Architecture with Distributed Placement of Controllers for
WAN. Concurr. Comput. Pract. Exp. 2017, 29, e4030

[95] Das, T.; Sridharan, V.; Gurusamy, M. A Survey on Controller Placement in SDN. IEEE
Commun. Surv. Tutor. 2020, 22, 472–503

[96] Alwasel, K.; Calheiros, R.N.; Garg, S.; Buyya, R.; Pathan, M.; Georgakopoulos, D.; Ranjan, R.
BigDataSDNSim: A Simulator for Analyzing Big Data Applications in Software-Defined Cloud
Data Centers. Softw. Pract. Exp. 2020, 51, 893–920

[97] Alomari, A.; Subramaniam, S.K.; Samian, N.; Latip, R.; Zukarnain, Z. Resource Management
in SDN-Based Cloud and SDN-Based Fog Computing: Taxonomy Study. Symmetry 2021, 13,
734

[98] Gonzalez, N.M.; Carvalho, T.C.M.D.B.; Miers, C.C. Cloud Resource Management: Towards
Efficient Execution of Large-Scale Scientific Applications and Workflows on Complex
Infrastructures. J. Cloud Comput. 2017, 6, 1–20

[99] Hegazy, A.; El-Aasser, M. Network Security Challenges and Countermeasures in SDN
Environments. In Proceedings of the 2021 Eighth International Conference on Software
Defined Systems (SDS), Gandia, Spain, 6–9 December 2021; pp. 1–8

[100] Alwasel, K.; Jha, D.N.; Hernandez, E.; Puthal, D.; Barika, M.; Varghese, B.; Garg, S.K.;
James, P.; Zomaya, A.; Morgan, G.; et al. IoTSim-SDWAN: A Simulation Framework for
Interconnecting Distributed Datacenters over Software-Defined Wide Area Network (SD-
WAN). J. Parallel Distrib. Comput. 2020, 143, 17–35

[101] Uddin, M.; Mukherjee, S.; Chang, H.; Lakshman, T.V. SDN-Based Service Automation for
IoT. In Proceedings of the 2017 IEEE 25th International Conference on Network Protocols
(ICNP), Toronto, ON, Canada, 10–13 October 2017; pp. 1–10

[102] H. I. Kobo A. M. Abu-Mahfouz and G. P. Hancke "Fragmentation-Based Distributed
Control System for Software-Defined Wireless Sensor Networks" IEEE Transactions on
Industrial Informatics vol. 15 no. 2 pp. 901-910 Feb. 2019

37

[103] W. Munawar M. H. Alizai O. Landsiedel and K. Wehrle "Dynamic TinyOS: Modular and
Transparent Incremental Code-Updates for Sensor Networks" 2010 IEEE International
Conference on Communications pp. 1-6 2010

[104] C. Han R. Kumar R. Shea and M. Srivastava "Sensor network software update
management: a survey" International Journal of Network Management vol. 15 no. 4 pp. 283-
294 July 2005

[105] S. Brown and C. Sreenan "Software Updating in Wireless Sensor Networks: A Survey and
Lacunae“ Journal of Sensor and Actuator Networks vol. 2 no. 4 pp. 717-760 Nov. 2013

[106] J. Lee "Patch Transporter: Incentivized Decentralized Software Patch System for WSN
and IoT Environments" Sensors vol. 18 no. 574 2018

[107] S. Agrawal R. Roman M.L. Das A. Mathuria and J. Lopez "A Novel Key Update Protocol in
Mobile Sensor Networks" Notes in Computer Science vol. 7671 2012

[108] P. Radmand A. Talevski S. Petersen and S. Carlsen "Comparison of industrial WSN
standards" 4th IEEE International Conference on Digital Ecosystems and Technologies pp.
632-637 2010]

[109] Zigbee protocol. Specifications available at:
https://web.archive.org/web/20130627172453/http://www.zigbee.org/Specifications/ZigB
ee/FAQ.aspx (accessed on 17.05.2021)

[110] WirelessHART technology. Specifications available at:
https://www.fieldcommgroup.org/sites/default/files/imce_files/technology/documents/Wir
elessHART_system_eng_guide.pdf (accessed on 17.05.2021)

[111] ISA.100 standard. Specifications available at: https://www.isa.org/standards-and-
publications/isa-standards/isa-standards-committees/isa100 (accessed on 17.05.2021)

[112] Gast, M.S. 802.11 Wireless Networks: The Definitive Guide; O’Reilly: Chicago, IL, USA,
2002; pp. 218–221

[113] TCP protocol specified in RFC 793. Available at: https://tools.ietf.org/html/rfc793
(accessed on 01.06.2020)

[114] Meteoblue historical data. Available at: https://www.meteoblue.com/en/historyplus
(accessed on 01.06.2020)

[115] Qt framework over the C++ programming language. Available at: https://www.qt.io/
(accessed on 15.01.2020)

[116] Mansfield, K.C.; Antonakos, J.L. Computer Networking from LANs to WANs: Hardware,
Software, and Security; Cengage Learning: Boston, MA, USA, 2010; p. 501

38

[117] S. Buzura, B. Iancu, V. Dadarlat, A. Peculea, E. Cebuc "Optimizations for Energy Efficiency
in Software-Defined Wireless Sensor Networks", Sensors 2020, 20, 4779. doi:
https://doi.org/10.3390/s20174779

[118] S. Buzura, V. Dadarlat, B. Iancu, A. Peculea, E. Cebuc and R. Kovacs, "Self-adaptive Fuzzy
QoS Algorithm for a Distributed Control Plane with Application in SDWSN," 2020 IEEE
International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca,
Romania, 2020, pp. 1-6, doi: 10.1109/AQTR49680.2020.9129922

[119] iPerf tool. Available at: https://iperf.fr/ (accessed on 17.05.2021)

[120] Jin, X.; Gossels, J.; Rexford, J.; Walker, D. CoVisor: A compositional hypervisor for
software-defined networks. In Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation (NSDI’15), Oakland, CA, USA, 4–6 May 2015; USENIX-The
Advanced Computing Systems Association: Berkley, CA, USA, 2015; pp. 87–101

[121] Yang, G.; Yu, B.; Jin, H.; Yoo, C. Libera for Programmable Network Virtualization. IEEE
Commun. Mag. 2020, 58, 38–44

[122] S. Buzura, M. Lehene, B. Iancu, V. Dadarlat "An Extendable Software Architecture for
Mitigating ARP Spoofing-Based Attacks in SDN Data Plane Layer", Electronics 2022, 11, 1965.
doi: https://doi.org/10.3390/electronics11131965

[123] S. Buzura, A. Peculea, B. Iancu, E. Cebuc, V. Dadarlat, R. Kovacs "A Hybrid Software and
Hardware SDN Simulation Testbed", Sensors 2023, 23, 490.
https://doi.org/10.3390/s23010490

[124] S. Buzura, V. Lazar, B. Iancu, A. Peculea and V. Dadarlat, "Using Software-Defined
Networking Technology for Delivering Software Updates to Wireless Sensor Networks," 2021
20th RoEduNet Conference: Networking in Education and Research (RoEduNet), Iasi,
Romania, 2021, pp. 1-6, doi: 10.1109/RoEduNet54112.2021.9637720

[125] S. Buzura, V. Dadarlat, A. Peculea, H. Bertrand and R. Chevalier, "Simulation Framework
for 6LoWPAN Networks Using Mininet-WiFi," 2022 IEEE International Conference on
Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 2022, pp. 1-5, doi:
10.1109/AQTR55203.2022.9802017.

[126] S. Buzura, A. Suciu, E. Cebuc, B. Iancu and V. Dadarlat, "Development Framework for
Simulating Routing Behavior in Software-Defined Wireless Networks," 2022 21st RoEduNet
Conference: Networking in Education and Research (RoEduNet), Sovata, Romania, 2022, pp.
1-6, doi: 10.1109/RoEduNet57163.2022.9921101.

[127] S. Buzura, B. Iancu and V. Dadarlat, "Creating Educational and Research Tools for QoS-
Focused Software-Defined Networking Projects", 2022 IEEE Global Engineering Education
Conference (EDUCON), 2022, pp. 1179-1182, doi: 10.1109/EDUCON52537.2022.9766749.

[128] A. Peculea, B. Iancu, S. Buzura, V. Ratiu, coordonatori: V. Dadarlat, E. Cebuc, Computer
networks. Practical activities, Ed. U.T. PRESS, 978-606-737-633-3, 2023

39

[129] M. Lipp et al., "Nethammer: Inducing Rowhammer Faults through Network Requests,"
2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Genoa,
Italy, 2020, pp. 710-719, doi: 10.1109/EuroSPW51379.2020.00102.

[130] A. Peculea, B. Iancu, V. Dadarlat, S. Buzura, Circuite analogice și numerice. Aplicatii
practice, Ed. U.T. PRESS, 978-606-737-458-2, 2020

[131] A. Peculea, B. Iancu, V. Dadarlat, S. Buzura, Analog and Digital Circuits. Practical
Applications, Ed. U.T. PRESS, 978-606-737-459-9, 2020

40

LIST OF PUBLICATIONS

Articles published in ISI indexed journals:

S. Buzura, B. Iancu, V. Dadarlat, A. Peculea, E. Cebuc "Optimizations for Energy

Efficiency in Software-Defined Wireless Sensor Networks", Sensors 2020, 20, 4779.

doi: https://doi.org/10.3390/s20174779 IF: 3.576 Q1

S. Buzura, A. Peculea, B. Iancu, E. Cebuc, V. Dadarlat, R. Kovacs "A Hybrid Software and

Hardware SDN Simulation Testbed", Sensors 2023, 23, 490.
https://doi.org/10.3390/s23010490 IF: 3.847 Q2

S. Buzura, M. Lehene, B. Iancu, V. Dadarlat "An Extendable Software Architecture for

Mitigating ARP Spoofing-Based Attacks in SDN Data Plane Layer", Electronics 2022, 11,
1965. doi: https://doi.org/10.3390/electronics11131965 IF: 2.69 Q3

Articles presented at ISI Proceedings indexed conferences:

S. Buzura, V. Dadarlat, A. Peculea, H. Bertrand and R. Chevalier, "Simulation

Framework for 6LoWPAN Networks Using Mininet-WiFi", 2022 IEEE International

Conference on Automation, Quality and Testing, Robotics (AQTR), 2022, pp. 1-5, doi:
10.1109/AQTR55203.2022.9802017.

S. Buzura, B. Iancu and V. Dadarlat, "Creating Educational and Research Tools for QoS-

Focused Software-Defined Networking Projects", 2022 IEEE Global Engineering

Education Conference (EDUCON), 2022, pp. 1179-1182, doi:
10.1109/EDUCON52537.2022.9766749.

S. Buzura, V. Dadarlat, B. Iancu, A. Peculea, E. Cebuc and R. Kovacs, "Self-adaptive

Fuzzy QoS Algorithm for a Distributed Control Plane with Application in SDWSN", 2020

IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR),

2020, pp. 1-6, doi: 10.1109/AQTR49680.2020.9129922.

R. A. Kovacs, B. Iancu, V. T. Dadarlat, E. Cebuc and S. Buzura, "Extending K-cover

genetic algorithm for efficient energy consumption in WSNs", 2019 18th RoEduNet

Conference: Networking in Education and Research (RoEduNet), 2019, pp. 1-6, doi:

10.1109/ROEDUNET.2019.8909581.

Articles presented at conferences indexed in international databases:

S. Buzura, A. Suciu, E. Cebuc, B. Iancu and V. Dadarlat, "Development Framework for

Simulating Routing Behavior in Software-Defined Wireless Networks", 2022 21st

RoEduNet Conference: Networking in Education and Research (RoEduNet), 2022, pp.

1-6, doi: 10.1109/RoEduNet57163.2022.9921101.

Sauchea, S. Buzura, A. Peculea, E. Cebuc and V. Dadarlat, "Open Source Network

Management System Based on SharpPcap for QoS and Security Policies", 2022 21st

41

RoEduNet Conference: Networking in Education and Research (RoEduNet), 2022, pp.

1-5, doi: 10.1109/RoEduNet57163.2022.9921027.

R. Kovacs, B. Iancu, V. Dadarlat, S. Buzura, A. Peculea and E. Cebuc, "A collaborative

game theory approach for determining the feasibility of a shared AS blockchain

infrastructure", 2021 20th RoEduNet Conference: Networking in Education and
Research (RoEduNet), 2021, pp. 1-6, doi: 10.1109/RoEduNet54112.2021.9637711.

S. Buzura, V. Lazar, B. Iancu, A. Peculea and V. Dadarlat, "Using Software-Defined

Networking Technology for Delivering Software Updates to Wireless Sensor

Networks", 2021 20th RoEduNet Conference: - Networking in Education and Research
(RoEduNet), 2021, pp. 1-6, doi: 10.1109/RoEduNet54112.2021.9637720.

V. Lazar, S. Buzura, B. Iancu and V. Dadarlat, "Anomaly Detection in Software Defined

Wireless Sensor Networks Using Recurrent Neural Networks", 2021 IEEE 17th

International Conference on Intelligent Computer Communication and Processing

(ICCP), 2021, pp. 19-24, doi: 10.1109/ICCP53602.2021.9733669.

S. Buzura, B. Iancu, V. Dadarlat, "A System Proposal for Collecting Medical Data from

Heterogeneous Sensors Using Software-Defined Networks", 7th International

Conference on Advancements of Medicine and Health Care through Technology,

Springer International Publishing, MediTech, 2020, pp. 282-289, doi:
https://doi.org/10.1007/978-3-030-93564-1_32.

Article presented at an ISI Proceedings indexed conference before the PhD

stage:

S. Buzura, V. Dadarlat, A. Peculea, B. Iancu and E. Cebuc, "Simulations framework for

network congestion avoidance algorithms using the OMNeT++ IDE", 2013 11th

RoEduNet International Conference, 2013, pp. 1-8, doi:

10.1109/RoEduNet.2013.6511758.

Laboratory activity practical guides published with the research group
CNP (Computer Networks and Protocols)

A. Peculea, B. Iancu, S. Buzura, V. Rațiu, coordonatori: V. Dadarlat, E. Cebuc, Computer

networks. Practical activities, Ed. U.T. PRESS, 978-606-737-633-3, 2023. Available at:

https://biblioteca.utcluj.ro/files/carti-online-cu-coperta/633-3.pdf (accessed on: 19.05.2023)

A. Peculea, B. Iancu, V. Dadarlat, S. Buzura, Circuite analogice și numerice. Aplicatii

practice, Ed. U.T. PRESS, 978-606-737-458-2, 2020. Available at:

https://biblioteca.utcluj.ro/files/carti-online-cu-coperta/458-2.pdf (accessed on: 19.05.2023)

A. Peculea, B. Iancu, V. Dadarlat, S. Buzura, Analog and Digital Circuits. Practical

Applications, Ed. U.T. PRESS, 978-606-737-459-9, 2020. Available at:

https://biblioteca.utcluj.ro/files/carti-online-cu-coperta/459-9.pdf (accessed on: 19.05.2023)

