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1. Introduction 

The progress in the field technological communications has encouraged the rapid 
development of large-scale computer networks. This is visible today in the form of the 
internet, which is used in most of our daily activities, whether professional or personal. The 
rapid development of the internet, due to global demand, was achieved through the 
deployment of multiple identical hardware devices (such as routers and switches), which all 
implement the same communication protocols (without the possibility of being easily 
customised). This architecture is known as the traditional network architecture, which is 
based on the homogeneity of the devices it contains. Although this architecture is easily 
scalable, the devices are not easily customisable, and this does not serve the current 
requirements where different applications and industries need custom management. This 
problem is also enhanced by the increasing heterogeneity of connected devices in modern 
networks. To address these issues, the Software Defined Networking (SDN) paradigm was 
introduced, which aims to define the operating policies of a network in a software 
configurable and dynamic way. 

1.1. Context 

The software-defined networking paradigm represents a new way of designing 
networks to keep up pace with the emerging innovations developments in the research field. 
This paradigm does not directly address the problems of traditional networks, such as 
routing, traffic engineering or security, but it gives the possibility to implement innovative 
solutions to address these problems [1]. Software-defined networks do not depend on the 
hardware over which they are built, and the complexity of designing such a network is moved 
to the software level. A software-defined network is divided into several planes, which are 
used depending on the deployment context of the network. The separate planes are the 
following: data plane, operational plane, control plane, management plane and applications 
plane. The data plane manages the packets transmitted over the network based on the rules 
received from the control plane. The main operations that devices in the data plane can 
perform on network packets are: forward, delete and change. The operational plane is 
theoretically separated, although in practical implementations its functions are part of the 
data plane. The main functions of this plane are to determine the status of devices (e.g. on or 
off) or the number of available ports on each device. The control plane is responsible to make 
decisions on network traffic by sending instructions to devices in the data plane containing 
instructions on what actions to perform on the data packets. The management plane is 
responsible for monitoring and configuring the operation of network devices, especially the 
devices in the control plane. The application plane contains the applications that use the 
network services which also define the deployment context of the network [2].  

1.2. Motivation 

The challenges proposed in the current thesis are about the improvement of Quality of 
Service (QoS) and Quality of Experience (QoE) of end users in software-defined networks. 
Regarding the proposed topic of services and performance improvement in programmable 
networks, performance metrics need to be defined in relation to each individual contribution. 
A scientific process is characterised by two features: measurability and repeatability. Thus, for 
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each test scenario the measured parameters must be defined and each simulation or 
experiment must have a deterministic behaviour. In traditional networks, QoS is 
characterised by measuring the volume of data transmitted between two network nodes in a 
given time interval. QoE is defined as the level of user satisfaction with network services [3]. 
This is not so easy to implement in software-defined networks, where architectural 
separation into the different planes together with the use of multiple protocols (e.g. 
OpenFlow, LISP - Location Identifier Separation Protocol or BGP - Border Gateway Protocol) 
allow different local optimizations, which are not easily measurable when transmitting data 
between two different terminal nodes. Thus, an important challenge that is addressed by this 
PhD thesis is to identify the measurement metrics for each simulation and each individual 
experiment that highlight the proposed improvements. 

The research that was made in this thesis is significant because it provides a 
framework that addresses various theoretical and practical topics in the areas of traffic 
engineering, collaborative systems, artificial intelligence and security. Technical innovations 
are proposed in all of these theoretical areas of work and at all the architectural levels of 
software-defined networks. The above topics encompass most of the functions of a network. 
Their aggregate implementation in the same system provides a complete solution that can be 
used in software-defined networks. While most studies focus on a single topic where the same 
traditional metrics are used to measure performance, this thesis proposes new network 
topologies and new benchmarks for simulations and experiments. Having newly proposed 
topologies that address interdisciplinary topics, the measurement metrics also need to be 
adapted to represent different network operations that influence other functionalities within 
the network. One such example, which will be detailed in the following chapters, is in the 
context of security where a network attack consumes the available network bandwidth. This 
leads to a decrease in the bandwidth allocated to useful and relevant data traffic. The 
proposed metric to improve network performance is the detection time of an attack occurring 
in the network, which, the lower it is, the more it succeeds in increasing the amount of critical 
data traffic. So, it is not strictly measuring the transmission speed at the two ends, but it is 
measuring the duration of another operation that subsequently affects this speed of the 
relevant network traffic. 

The complexity of this thesis is determined not only by the technical difficulties, but 
also by the chosen working methods, which, through incremental development, have led to 
results throughout the entire working period. Among the technical elements that demonstrate 
the increased complexity are the following: the interdisciplinary nature of the thesis that 
addresses different areas with applicability in the field of software-defined networking; the 
heterogeneous nature of the work carried out that uses different hardware technologies, 
different software technologies, but also different communication protocols between network 
devices; the development of solutions using information from all layers of the TCP/IP 
(Transmission Control Protocol/Internet Protocol) protocol stack; the implementation of 
software solutions in different operating systems (Windows, Linux) and in different 
programming languages (C, C++, Windows Batch, Matlab, Python, Java, C#, Linux Bash, 
qmake); the automation of test scenarios through software programmability. Among the 
learning and working methods that have facilitated the development of the published 
solutions are the following methodologies: problem based learning - this methodology 
assumes the existence of a problem that has no solution and must be solved in some way; 
project based learning - this methodology assumes the existence of a project feature that must 
be brought to completion; challenge based learning - this methodology assumes the 
achievement of a goal for which the necessary knowledge does not yet exist, and which must 
first be identified and then learned. 
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1.3. Objectives 

 This subchapter presents the objectives of this thesis. The main objectives address the 
conceptual and theoretical aspects of the proposed topics. The secondary objectives address 
the implementation details that were necessary to fulfil the main objectives. A chapter from 
the personal contributions section corresponds to each main objective. Of the four personal 
contribution chapters, the first three address individual research innovations, while the last 
chapter incorporates the previous innovations into the same working environment. 

1.3.1. Main Objectives 

1.3.1.1. The main objective of the first personal contribution chapter is to propose 
performance improvement in software-defined networks by improving the QoS and QoE 
characteristics of the network by reducing redundant traffic at the data plane level in a 
wireless sensor network. (Chapter 3) 

1.3.1.2. The main objective of the second personal contribution chapter is to propose 
performance improvement in software-defined networks by developing a distributed and 
collaborative control plane for reducing control traffic and maximizing critical data traffic in 
the network using various collaboration techniques. (Chapter 4) 

1.3.1.3. The main objective of the third personal contribution chapter is to propose 
performance improvement in software-defined networks by addressing security risks that 
may negatively impact essential network data traffic. (Chapter 5) 

1.3.1.4. The main objective of the fourth personal contribution chapter is to propose 
performance improvement in software-defined networks by creating a hybrid software and 
hardware development framework that allows concurrent testing of the policies defined in 
the previous objectives. (Chapter 6) 

1.3.2. Secondary Objectives 

The secondary objectives are grouped for each main objective represented by a 
separate personal contribution chapter: 

1.3.2.1. Secondary objectives for traffic management in an SDWSN (Chapter 3): 

• Study of different traffic management methods that can be integrated into an SDN 

• Creation of a test network on a single device using the property of network interfaces 
to have multiple IP addresses configured on them 

• Identification and usage of a representative data set for testing the implementation 

• Definition of the performance metrics at the data plane layer in an SDWSN 

1.3.2.2. Secondary objectives for the development of the distributed and collaborative control 
plane (Chapter 4): 

• Implementation of the network communication between the devices in the distributed 
system (the distributed and collaborative control plane) 

• Usage of the OpenVSwitch solution and the OpenFlow protocol to generate data sets 
during the testing phase 
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• Study and implementation of the fuzzing technique in the context of QoS in SDN 

• Study and implementation of artificial intelligence (AI) techniques in SDN, more 
precisely the decentralised federated learning technique 

• Definition of the performance metrics in the interaction between the control plane and 

the data plane of the SDN 

1.3.2.3. Secondary objectives for addressing security risks in an SDN (Chapter 5): 

• Study of different types of attacks that can be generated in the network 

• Execution of network attacks using Kali Linux 

• Usage of the OpenVSwitch software solution based on the OpenFlow protocol and its 
extension with functionality that will run at the data plane layer of the SDN 

• Definition of metrics for measuring the performance in the data plane layer of the SDN 

1.3.2.4. Secondary objectives for the development of a hybrid development framework 
(Chapter 6): 

• Demonstration of the heterogeneous and interdisciplinary nature of the topic of 
software-defined networks 

• Integration of different programming techniques and software architectures in the 
research work for rapid development and prototyping 

• Application of solutions at all architectural layers of the SDN (application, control and 
data planes) 

• Implementation of the framework using working environments used in research, such 
as Mininet and Mininet-WiFi 

• Integrating multiple hardware devices into networks created in Mininet and Mininet-
WiFi 

• Development of methods using protocols from all layers of the TCP/IP protocol stack 

1.4. Presentation of the Thesis Research 

 This PhD thesis is defended by the following published results: 3 articles in ISI indexed 
journals (all of them as first author), 4 papers presented at ISI Proceedings indexed 
conferences (3 of them as first author), 6 papers presented at IDB indexed international 
conferences (3 of them as first author). 
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2. Bibliographical Study Related to the Proposed Objectives 

2.1. Traffic Engineering in Software-Defined Wireless Sensor Networks 

User expectations are reflected by the increasing functionality of applications that use 
data provided by a wireless sensor network [4]. The academic community is making 
continuous efforts to provide opportunities to meet user requirements by offering dynamic 
programming solutions for such networks. The ultimate goal of these efforts is to allow the 
management of heterogeneous networks with different topologies as autonomously as 
possible [5], [6], [7]. Software-defined networking is now the main paradigm used for 
network programmability. It is important to note at this point that this paradigm does not 
impose a specific communication protocol between its planes, but OpenFlow is the most 
popular encountered protocol [8]. [9] proposes a routing algorithm in the context of SDWSN 
that defines packet transmission routes according to the energy level of each node in the 
network. [10] shows the activity patterns of a WSN while data is being transmitted or while 
the network is idle. There are studies in the literature that use different data caching methods 
in WSNs [11]. [12] uses a variant of data content caching. Another way to improve traffic 
quality is to use a routing algorithm that also uses load balancing techniques, or clustering 
[13]. [14] succeeds in formulating a scheduling mechanism that improves the energy 
efficiency of a SDWSN by a variable percentage between 20-40%. [15] proposes a data flow 
separation algorithm to minimize congestion with the aim of improving network energy 
efficiency. [16] shows a compromise solution that forwards data computed from a hashing 
operation. [17] presents ways to find similarities between data by processing the generated 
hashes. One of the most widely used techniques to reduce energy consumption in WSNs is 
grouping sensors in a cluster [18], [19]. The coordinating sensor is chosen based on the 
energy level of the sensors in the cluster, but different methods of predicting and 
probabilizing energy levels can also be chosen [20]. [21] uses machine learning technique to 
decide which sensor is the coordinating sensor of the cluster, thus reducing the transmitted 
traffic. 

2.2. Collaborative Systems in the Software-Defined Networks Control Plane 

Improvements in QoS are continuously being adjusted and will evolve as networks 
improve their operating parameters [22]. The OpenFlow protocol is used to standardize 
communication between the data plane and the control plane of a software-defined network. 
By removing some computational functions from devices in the data plane, they will increase 
the amount of data they can forward, resulting in improved network QoS characteristics. This 
is demonstrated in [23], which also argues that one of the most important parameters in the 
OpenFlow rules that can be used in the collaborative system is the OpenFlow rule lifetime, i.e. 
the time until the rule is deleted when it expires. [24] implements a framework in clusters of 
nodes of a data plane with the aim of providing improvements for QoS. [25] validates the use 
of the OpenFlow protocol in software-defined networks with the end goal to provide adaptive 
and dynamic QoS. [26] validates the use of a distributed control plane especially in the context 
of software-defined wireless sensor networks. [27] explains different design architectures for 
the control plane in software-defined networks. There are many techniques used to improve 
the QoS offered by computer networks: Random Early Detection (RED) algorithms, machine 
learning [28], [29], different traffic classification methods [30], [31], [32], etc. [33] presents 



 

 

 

 

7 

different ways in which learning-based techniques are integrated in distributed systems, such 
as in the context of the current PhD thesis. Recently defined by Google in 2017 [34], federated 
learning has since grown to be used in industry for various use cases in QoS related areas 
[35]. [36] presents different applications of using federated learning technique, but a general 
feature is that the process involves a centralized global model that is cloned and distributed to 
each participating node. [37] proposes a new solution in which the main idea is to 
communicate only the sign of each gradient update instead of the actual value. [38] uses 
ternary sparse compression to solve the non-IDD data problem. The algorithm is inspired by 
the top-k sparsification technique, communicating only a small fraction of the largest 
gradients in the model. [39] is a study that applies the federated learning technique to 
improve packet routing in a software-defined network. [40] uses federated learning to 
improve traffic monitoring systems based on the data they collect. [41] addresses the problem 
of data traffic classification by proposing a traffic classification protocol. In a switch 
implementing the OpenFlow protocol, whenever a packet does not match any flow record, 
packet transmission is stopped until the associated control device responds with the validity 
duration for that data flow [42]. [43] addresses the table miss problem and attempts to 
mitigate it by implementing functionality on OpenFlow switches not to delete flow records 
when their validity duration expires, but rather to mark them as inactive for a period of time 
in case the same rule is needed in the immediate future. [44] also addresses the problem of 
reducing the number of table misses, but in this case the paper uses buffering and cache-
rolling for a series of packets belonging to the same stream, thus sending a single packet_in 
request for the series of packets belonging to the same data stream. For the system using the 
fuzzing technique in the current PhD thesis, simulations use datasets containing values similar 
to those presented in [45] to measure the performance of the system. 

2.3. Security in Software-Defined Networks 

Along with the positive opportunities introduced in the field of software-defined 
networking, security risks in such networks have also increased and, as a result, much 
research effort is directed towards detecting and mitigating network attacks [46]. Attacks 
based on the ARP spoofing techniques allow a malicious actor to assume the identity of 
another network device by generating ARP requests (via gratuitous ARP packets), but which 
appear to originate from the device intended for actual communication on the network [47]. It 
is important to note that the ARP spoofing attack is only the attack that creates the context for 
other attacks, such as MitM (Man in the Middle). Therefore, it is actually the attack that needs 
to be detected and mitigated, not the attacks that are developed afterwards [48]. [49] 
highlights three main categories of solutions against ARP spoofing attacks: solutions based on 
traffic patterns; solutions based on flowcharts; solutions based on analysing mappings 
between IP addresses and MAC addresses. [50] is an application that analyses data traffic and 
monitors all ARP requests flowing through the network, and when a request contains 
mappings that are inconsistent with the mappings already existing in the monitoring 
application's database, this data frame is blocked. [51] presents an improved network 
architecture that prevents the generation of ARP MitM attacks. [52] is a study that relies on 
mappings stored on other devices in the network. The mechanism of operation of the 
OpenFlow communication protocol runs in several steps according to [53], and the 
complexity and duration of this whole process is intended to be avoided. The flow graphs are 
based on the interception and interpretation of OpenFlow packets in the network. [54] 
dynamically generates flow graphs for OpenFlow traffic between the control plane and the 
data plane of a software-defined network. [55] does not operate in the context of software-
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defined networks, but provides an approach for addressing ARP spoofing attacks by analysing 
network traffic using the JPCAP library for monitoring data traffic. A similar situation is found 
in [56], where a control device is extended with functionality that notes malicious MAC 
addresses in a blacklist, and this list is passed to switches via the OpenFlow protocol. [57] 
designs a multi-step algorithm to detect attacks in real time. [58] argues that computational 
efficiency is improved when the controller is not involved in decision making. [59] describes 
the implementation of methods to reject ARP spoofing attacks. The solution is implemented as 
an extension to the Open Floodlight control solution [60]. [61] states that it demonstrates a 
solution to the same problem, being implemented in the data plane, but it requires Ryu [62] to 
define the initial rules, which are passed to switches in the data plane. From a technical 
perspective, [63] proposes a detection algorithm also implemented in Bash, but running only 
on terminal devices, and the attack can only be detected if it is performed towards the current 
machine. [64] considers the impact of such solutions from a QoS point of view. 

2.4. Frameworks for Simulations and Experiments 

Mininet [65] is an emulator for Ethernet wired networks, but it has other extensions, 
such as Mininet-Wifi [66] and Mininet-Optical [67], which implement Layer 2 protocols from 
the ISO/OSI protocol stack, specific to wireless and optical transmission technologies 
respectively. An example for the utilization of the OpenFlow protocol is the study in [68], 
which explains the use of the POX SDN controller solution [69] for defining operating rules in 
the software-defined network. [70] presents an extension of the Cooja simulator under the 
name WSDP (Weather & Soil Data Provider). This extension is actually a plugin for the Cooja 
simulator [71] that is able to generate real-time geographic data for sensors created inside the 
simulator. [72] presents a complex approach to address congestion in networks. [73] presents 
a framework for simulating the route generation process based on different traffic categories 
in a 6LoWPAN wireless sensor network. [74] describes a solution on how to manage wireless 
sensor networks using the SDWSN paradigm where energy consumption is reduced by using 
control plane for network management. Another study addressing the dynamic routing 
problem is presented in [75] where a real-world environment is used to test different routing 
algorithms with the aim of increasing network lifetime. [76] uses the OMNeT++ simulator [77] 
to implement algorithms to improve the throughput of certain data flows in the event of 
congestion at the router level. The study presented in [78] explores different technologies 
used in software-defined network performance and stability experiments. Another study 
measuring the performance of POX and Ryu control solutions in networks built in Mininet can 
be found at [79]. Different topologies of linear networks, tree networks or data centre 
networks are used in the simulations. [80] uses a load balancing algorithm, which is based on 
monitoring the traffic in the used sensor network. The study presented in [81] uses Net2Plan 
[82], a network function management utility, together with the SDN-specific controller 
OpenDaylight, which is based on the Java programming language. [83] creates a framework to 
address energy efficiency and security in wireless sensor networks in the IoT domain. [84] 
uses Mininet-WiFi together with the Ryu controller to measure the performance of a 
multipath-based routing algorithm with the ultimate goal of improving QoS rules. For real-
time programmatic processing of packets flowing through the network, PCAP (Packet 
CAPture) software solutions can be used, including the following: Npcap [85], SharpPcap [86], 
Pcap4J [87] or jNetPcap [88]. These solutions are usually used as a static or dynamic library 
by the main program. [89] presents a client-level QoS monitoring and management system 
using the SharpPcap library. [90] presents the challenges offered by a large-scale IoT 
environment. [91] presents a software solution that compares the execution time of some 
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operations performed at the network level. [92] addresses an emerging topic of unmanned 
aerial vehicles (drones), which benefit from autonomous control when they lose network 
connection. The study in [93] presents five large-scale SDN frameworks used in campus or 
backbone networks. The study in [94] addresses the problem of large-scale networks where 
multiple control devices are needed to serve the network requirements. [95] discusses 
various issues related to the placement of SDN control devices. [96] describes a software 
solution to simulate a data management system in a cloud computing context. [97] analyses 
asynchronous transmissions between nodes in a network with the ultimate goal of improving 
overall network performance and reducing overall energy consumption. [98] classifies 
different approaches for managing applications and work operations in large-scale systems. 
[99] discusses the issue of security in software-defined networks. [100] proposes the IoTSim-
SDWAN solution, a simulator capable of modelling, simulating and evaluating new solutions in 
SD-WAN systems and datacenters built over SDN architecture. [101] proposes a mechanism 
for deploying IoT devices at the network edge using the methodology provided by SDN. [102] 
demonstrates the use of two architectures for control plane design, namely, a linear and a 
hierarchical architecture. According to [103], traditional methods used in the context of 
software updates include the following: manually updating each sensor; running a static 
operating system image connected statically at the node level; using dynamic operating 
systems. According to [104], for updating a WSN, three elements closely related to power 
level management in WSNs and related to the computational capacity of all devices must be 
considered: the execution environment at each sensor level; the network data transmission 
protocol; the algorithm used to optimize the software update process. In addition to these 
traditional elements, modern networks require several additional elements, according to 
[105], namely: non-intrusive remote updating (Over the Air); reducing the impact on WSN 
performance; limiting communication between devices and constraining communication to 
essential traffic only; rapid propagation of software updates in the network; implementing the 
ability to scale networks. [106] addresses this issue from a security perspective by using a 
blockchain system in the data transport mechanism. [107] also addresses this problem from a 
security point of view and implements a proprietary authentication key allocation and 
distribution system for the software update process. [108] discusses different industrial IoT 
standards such as Zigbee [109], WirelessHART [110], ISA.100 [111] and how they operate at 
different levels of the ISO/OSI protocol stack. 
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3. Improving the QoS Through Traffic Engineering 

3.1. System Design 

The research objective of this chapter is to implement a system in which a sufficiently 
knowledgeable control component can manage a wireless sensor network and determine 
whether or not the sensors should transmit data. In addition, the controller can also decide 
whether to transmit data proactively for each sensor, thus reducing the amount of data traffic 
in the data plane, which represents a WSN. This proposed system is shown in Figure 3.1. 

In order for the controller to perform the proposed functions, it implements two 
components. First, it implements a basic learning component that learns the behaviour for 
each sensor, i.e. the data transmission frequency for each sensor, to determine a transmission 
pattern. Second, it implements a data transmission mechanism based on the previously 
determined interval patterns. It is important to note that the control component does not 
collect energy levels from sensors to improve energy efficiency, but relies solely on the data 
transmission frequency from each sensor. 

The test environment shown in Figure 3.1 was built by implementing a control 
component and a generic, reusable sensor component in software. The control component 
and several sensor instances were deployed in different virtual machines on different 
computers in a wireless LAN. For initial tests, it is also possible to configure multiple network 
devices in the same machine using virtual network interfaces, but for final measurements, the 
wireless communication between network devices is required. This is mandatory to bring the 
environment closer to a real WSN. 

 
Figure 3.1 Network topology used in the testing scenarios 
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Each sensor implements functionality to generate sensor data and to act as a relay 
node according to the illustrated connections between network devices. Unlike using network 
emulators such as Mininet, where all network devices are run from a single computer, this 
approach has the advantage that there is a more realistic time interval between packet 
transmission and receipt. In addition, each sensor can be easily configured to generate 
random data or to replicate already stored data from a reference dataset at any interval. The 
network supports the IP protocol and static IP addresses have been configured on network 
devices according to the network topology. The sensor nodes were implemented with 
modules to generate sensor data, generate HELLO packets and routing capabilities to forward 
packets to a destination. Regarding the use of HELLO packets, these are not included in the 
mathematical model of the current proposal. This is based on the assumption that the use of 
HELLO messages is already a mechanism implemented by data transmission standards that 
are found at the data link layer of the TCP/IP protocol stack, checking whether wireless nodes 
are active or not. The wireless standard and literature guarantee that during the 
nonconstrained period, more information can be combined into a single packet, such as data 
and acknowledgements [112]. The minimum size of a TCP packet is 20 bytes [113], and when 
added to the size of the data payload, the results may have a different value depending on the 
type of packet transmitted, whether it represents sensor data or control data. Sensor data 
packets on network devices were generated from real sensor data retrieved from online data 
sources [114] over a four-week period. HELLO packets were designed to be generated at a 
much higher frequency than sensor data packets. The components were implemented in C++ 
using the Qt framework [115] for the facilities it brings to network communication and 
general software development. 

3.2. Practical Results 

The simulated context was the climate differences in various geographical regions. It 
should be noted here that the system works in other contexts as well, but the test network 
was chosen with the weather test subject because there are many already available data 
sources that can be used to perform the tests. Historical weather data was taken from the 
website of the data source referred to in [114] for different locations: Reykjavik (Iceland), 
Ouarzazate (Morocco), Budapest (Hungary). The reason why these three locations were 
chosen is due to the different climates they present. Reykjavik has a rainy oceanic climate, 
Ouarzazate has a desert climate, while Budapest has a temperate-continental climate. 
Calculation of the gains for the different network lifetime scenarios shows that the proposed 
system exhibits consistent behaviour in each scenario. In the long lifetime scenario, the total 
gain (i.e. percentage of optimised packets) is 25.1% of all packets. In the medium lifetime 
scenario, the total gain represents 25.71% of the total number of packets. And finally, in the 
short lifetime scenario, the gain represents 25.05% of all packets. This leads to the conclusion 
that the system saves about 25% of the generated network traffic. Most of the saved data 
values that are not transmitted are sensor defaults, which are generated when the sensors 
have nothing to report. The small difference between the scenarios depends solely on the 
nature of the sensor data in the selected dataset. The literature describes 5% as being critical 
for the QoS of a system [116]. 

3.3. Discussions and Conclusions 

The system proves to be effective in eliminating duplicate traffic in the WSN layer by 
using a few simple algorithms that are implemented at both the controller and sensor levels. 
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They combine concepts such as learning (at the control device level), content awareness (at 
the sensor level) and caching. The system is efficient even in packet-loss environments, as 
demonstrated by previous test scenarios where transmission errors have occurred. The 
threshold at which the system becomes less efficient is when the packet transmission rate 
reaches 15%, which is considerably higher than the threshold defined in the literature for 
lower quality QoS in wireless data systems. The additional memory resources required by the 
system are negligible in the WSN layer. The controller needs more memory to cache data from 
each sensor in the topology; however, the controller does not belong to a resource-
constrained environment and can be more easily updated to support deployment. In addition 
to reducing energy consumption in the WSN layer, this proposed system has an additional 
benefit of reducing congestion in sensor queues due to reduced network traffic, thus speeding 
up packet processing. 

Considering the test scenarios, which use data from three real locations, it can be said 
that the system is more suitable for selective deployment in one location than in all locations. 
This is due to the real data values, which may be more stable in some parts of the planet. 
However, this is by no means a rule in all possible scenarios, as the test data may also be 
different depending on the selected time period. In any case, a definitive conclusion that can 
be drawn is that the system brings optimisations in any environment in which it is 
implemented. The system also succeeds in increasing network lifetime because fewer packets 
are transmitted by the WSN layer, it improves QoS by reducing traffic volume in the WSN 
layer, and it improves QoE by proactively transmitting cached data to the application plane 
instead of waiting for the same data to be received from the sensors. There are some 
limitations and situations where QoE is not achieved, but these situations are considered as 
not being critical situations. 

In conclusion, the main objective defined in subchapter 1.3.1.1. was achieved by 
improving network performance through traffic engineering and the desired effect of 
increasing network lifetime was successfully obtained. The secondary objectives defined in 
subchapter 1.3.2.1. were also fully achieved by the following aspects: traffic was handled by 
data caching and adaptive data broadcasting techniques; the system was implemented using 
socket communication between multiple IP addresses configured on the local interface of the 
computer used for the simulations; the actual dataset was taken from the Meteoblue website 
containing historical data accessible for validation of the solution; the metric for performance 
verification was chosen as the network lifetime. 

3.4. Results Dissemination 

The results obtained in this chapter were disseminated in the following publication: 
 
[117] Buzura, S.; Iancu, B.; Dadarlat, V.; Peculea, A.; Cebuc, E. Optimizations for Energy 
Efficiency in Software-Defined Wireless Sensor Networks. Sensors 2020, 20, 4779. 
https://doi.org/10.3390/s20174779 IF: 3.576 Q1 
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4. Development of Collaborative Systems to Improve QoS 
Features in Software-Defined Networks 

4.1. System Design 

Two environments were defined and implemented in this stage. The first environment 
was based on simulating communication between network devices and simulating network 
traffic on the TCP, UDP and ICMP protocols. This approach was useful to validate the proposed 
algorithms before applying them in real data traffic context. The second environment was 
based on generating network traffic between multiple devices running on the same computer. 
This was achieved by using multiple local IP addresses (loopback addresses: 127.0.0.1 - 
127.255.255.255 or multiple IP addresses configured on the same network interface) that 
allow processes in the operating system to use a specific Layer 3 address. This approach is 
useful for generating realistic test scenarios based on real network traffic. Realistic test 
scenarios are necessary to generate conclusive results. Three topologies of the proposed 
networks were considered. These are: a network with a non-distributed control plane; a 
network with a distributed and non-collaborative control plane; a network with a distributed 
and collaborative control plane. The first topology’s purpose was more to validate the 
continuous implementation of the used algorithms. Also, the non-distributed and distributed 
noncollaborative scenarios also had the role of validating the proposed distributed and 
collaborative system improvements at the end. 

4.1.2. The Design for a Distributed Fuzzing System 

As previously mentioned, the goal of the system is to be self-adaptive and 
automatically adjust the traffic switching rules based on the number of missed rules. The 
number of failed rules is actually the number of packets for which the switch does not have an 
active switching rule and is forced to ask the controller for instructions on how to act on that 
packet. The fuzzing technique was chosen as the way for control devices to make decisions 
about changing packet switching rules, while the distributed method of using multiple control 
components allows multiple decisions to be made simultaneously, thus finding the optimal set 
of rules faster than when using a single control component. Communication between control 
devices is achieved by means of broadcast messages (transmitted throughout the control 
plane) through which the control devices share their configurations and statistics for each 
configuration, namely, a table with each timeout value to be used for each traffic type and the 
miss counter for each traffic type. The algorithm is implemented on the network control 
devices and assumes that the environment is a fully reactive SDWSN system, where the SDN 
component's data plane switches do not contain predefined rules at initialization for packet 
switching. 

4.1.3. The Design for a Distributed Decentralized Federated Learning System 

The system design begins with each control device waiting the receipt of a packet. 
When the packet is received, the controller checks the source of the packet if it was generated 
by another controller or by the directly connected switch from the data plane. If the source of 
the packet is another control device, this packet may only contain new training data to be 
stored for re-training. A control device starts its own training procedure when it shares data 
with other control devices. If the source of the packet is the attached switch, this packet can be 
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of two types. The first type of packet is an OpenFlow packet_in packet, and the second is a 
packet responding to the control device's request for training data from the switch. If the 
packet is of type OpenFlow packet_in, the controller increments the error counter for the 
traffic type queried by the communicator and responds to the switch with a packet of type 
packet_flow_mod containing the timeout value (to inform the switch how long it can redirect 
packets of that protocol type) that will be stored on the switch until it expires. The timeout 
that the controlling device responds with is calculated every three minutes by querying the 
local machine learning library. If the packet represents the response received for the training 
data request, this data will then be processed for the machine learning component. 

4.2. Practical Results 

In order to obtain the practical results, simulations were carried out in the topologies 
described in section 4.1. The three topologies were tested in the simulation scenario for the 
fuzzing technique. The topologies with multiple control devices were used for testing the 
federated learning scenario. The reason why all three topologies were only used in the fuzzing 
scenario is because the first topology was only useful in the development stages, but not for 
the final test. The final purpose of these practical results is to be able to observe the behaviour 
of the two techniques used in distributed systems. 

4.2.1. Results Obtained Using the Fuzzing Technique 

 
Figure 4.1 Results obtained using the fuzzing technique 

In the first test scenario, the non-distributed and non-collaborative topology, the 
controller contains a single miss counter table which is used for each connected switch. After 
each iteration, the controller performs the fuzzing operation on the current timeout values 
with a random variation of maximum ten seconds. The second test scenario, the distributed 
and non-collaborative topology, implements the same algorithm on the control devices, with 
the difference that there is one switch connected to each control device, but the number of 
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sent packets is identical. The control devices implement the same algorithm, but since their 
number is multiplied by three, there will be more fuzzing and therefore there will be more 
chances to generate a more favourable rule set. The third test scenario, the distributed and 
collaborative topology, presents an extension of the previous scenario, in which the control 
devices share information about their current sets of switching rules and the number of 
misses generated by each rule for each traffic type. The main difference from the previous 
scenario is that there is less chance of generating temporary negative results, since control 
devices have the possibility to cancel their current rule set if another control device has 
shared a better performing rule set, thus avoiding the use of insufficiently good rule sets. 
Figure 4.1 shows the results obtained using the fuzzing technique. 

4.2.2. Results Obtained Using the Federated Learning Technique 

 
Figure 4.2 Testing scenario for the decentralized federated learning technique 

Figure 4.2 shows the test scenario that was considered for the simulations using the 
decentralized federated learning technique. Two distributed systems with three control 
devices, one non-collaborative and the other collaborative, were considered. The figure 
indicates the congestion level encountered by each control device through the green or red 
loading bars, where the green color bar means low congestion and the red color bar means 
high congestion. It is important to explain that this is a simplified illustration, congestion is 
not actually encountered on the control device but on the switch, and this congestion is 
reflected on the control device by a higher number of OpenFlow packet_in packets received 
from the connected switch. So the green or red loading significance at the control device level 
represents the number of OpenFlow packet_in requests that are increasing as the attached 
switch receives network traffic for switching. The grey arrow indicates that there is a 
transition period between the states encountered in the simulation, and the three different 
states take place as follows: control devices encounter network traffic, C1 and C2 do not 
experience congestion, C3 experiences congestion; a retraining occurs after a certain period of 
time; in the third state, after retraining occurs on all control devices, C1 begins to experience 
congestion compared to the first state where this does not occur. 

Figure 4.3 displays a graph view of the number of misses at 10-minute intervals in the 
simulation. The full simulation lasted a total of 2h and 30 minutes. The training took place in 
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each system approximately halfway through the run. The timing of training depends on the 
number of data sets collected for training, so this operation does not always occur at regular 
intervals. In the case of the non-training system, the C1, C2 and C3 control devices were re-
trained at 1h 40m, 1h 50m and 1h 30m respectively. From the graph it can be seen that when 
switching to the third state, where congestion occurs on the C1 control device, an increase in 
the number of misses occurs. This happens due to the fact that more network traffic will 
inevitably generate more misses due to the lack of periods when there is no network traffic. It 
can be seen that in the case of the collaborative system there is always better performance by 
the fact that training data is shared before the congestion occurs. When entering the third 
state, the C1 controller will generate approximately the same number of misses as the C3 
controller because the C1 controller has already managed to train based on the experience of 
the C3 controller. This is not the case for the non-collaborative system, in which the C1 
controller will have at the beginning of the third state a number of misses approximately 
equal to the number of misses encountered from the C3 controller at the beginning of the first 
state. 

 
Figure 4.3 Results obtained using the decentralized federated learning technique 

4.3. Discussions and Conclusions 

The proposed fuzzing system shows an overall improvement in the average number of 
misses on switches in the data plane when using the distributed and collaborative system. The 
collaborative technique also generates the fastest decrease in the number of misses after the 
completion of the first iteration. If further explored, this mechanism based on distributed 
delegation of decision making can become a powerful solution in dynamic content 
environments (e.g. SDWSNs) to reduce manual network management effort. Automating the 
definition of QoS rules improves the user experience and, given current artificial intelligence 
technologies and capabilities, this area can be greatly improved. Continuing the proposal 
made in the fuzzing system, a system using decentralized federated learning technique was 
implemented which solves the same problem of decreasing the number of misses as different 
types of network traffic are encountered by switches in the data plane. The scenario simulated 
in the decentralized federated learning system is more complex and uses real data traffic, 
unlike the fuzzing scenario where network traffic was simulated. The simulations 
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demonstrate the effectiveness of the distributed and collaborative approach. It provides the 
best performance in terms of reducing OpenFlow communication packets between control 
devices and switches. In addition, self-adaptability is demonstrated in each scenario, but is 
shown to perform best in the collaborative scenarios. 

In conclusion, the QoS in such a distributed and collaborative system is improved 
because if there are fewer interactions with OpenFlow packets, then the time spent waiting to 
make the decision via the OpenFlow protocol is replaced by actually switching data traffic in 
the network. Thus, the effective data rate is increased and decreases the time spent 
transferring control packets which also blocks essential data communication. This increases 
the data rate at the switch, so network performance is improved. Therefore, the primary 
objective proposed in 1.3.1.2 was achieved. Also, the complex implementation of the test 
system required different levels of implementation, but through the successful 
implementation of both the fuzzing system and the decentralized federated learning system, 
the secondary objectives proposed in 1.3.2.2 have also been achieved. 

4.4. Results Dissemination 

The results obtained in this chapter were disseminated in the following publication: 

[118] S. Buzura, V. Dadarlat, B. Iancu, A. Peculea, E. Cebuc and R. Kovacs, "Self-adaptive Fuzzy 
QoS Algorithm for a Distributed Control Plane with Application in SDWSN", 2020 IEEE 
International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, 
Romania, 2020, pp. 1-6, doi: 10.1109/AQTR49680.2020.9129922 
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5. Improving the QoS by Addressing Security Risks 

5.1. System Design 

 
Figure 5.1 Proposed implementation in SDN architecture. The execution of the solution on the data plane switches is shown  

Given the SDN architecture, it is important to note that the current solution operates in 
the data plane and is implemented as an extension to OpenVSwitch. Figure 5.1 graphically 
shows the location of the implementation relative to an SDN topology. This subchapter 
presents the system that was implemented to demonstrate the concepts and the proposed 
approach. Figure 5.2 shows the components of the solution behaving in a similar way to the 
Linux pipeline architecture, where information is passed on from one process to another via a 
pipe or a file. It is a sequential flow of operations, and each component generates output data 
that is considered input data for the next component. Using this approach, each component is 
easily replaced or enhanced, the only restriction being that the specific format constraints for 
input and output data must be maintained. 

 
Figure 5.2 The sequence of operations required to detect and mitigate attacks. The used components and possible 

implementation alternatives are highlighted 
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Another important characteristic of this solution is that the sequence of operations is 
executed in a loop with a configurable time interval. The time interval parameter is stored in a 
configuration file which is read at run initialization. Thus, the solution is dynamic and 
provides parameterization at runtime, not at compile time. This is useful if the switch needs to 
be configured without recompiling any components. The configuration file also contains a 
parameter for the severity level passed to the decision maker component. The severity level 
can be used differently depending on the criticality level of the current network. Different 
decisions can be triggered in case of detecting an attack depending on the business domain 
where the network is used. 

5.2. Practical Results 

One important thing to point out is that the duration and mitigation time is actually the 
time it takes for the solution to execute the entire loop. Consequently, the detection and 
mitigation duration cannot be shorter than the execution of the solution. Therefore, the 
minimum detection and mitigation time of the attack is given by the execution time of the 
solution. As the experimental results demonstrate, the duration varies with the size of the 
network and the level of congestion. For low traffic scenarios, the average detection and 
mitigation time is approximately the same. However, as the number of network devices and 
traffic both increase, the computation time increases exponentially, as shown in Figure 5.3. 

 
Figure 5.3 Average time to detect and mitigate attacks in networks of different sizes with different levels of congestion. The figure 
shows the exponential increase in duration as the number of devices in the network increases, but also as the level of congestion 

increases 

This behaviour is caused by the fact that low traffic generates fewer OpenVSwitch flow 
entries, data that needs to be generated on the switch, which means that the next steps in the 
sequence do not receive as much input data for processing and do not generate significant 
additional processing time. As more traffic is generated, the required memory and computing 
hardware resources also increase. For medium traffic volume scenarios, an increase in 
detection and mitigation time is more noticeable as the network topology becomes more 
complex. Comparing the ten-device network with the three-device network, the processing 
time increases by 17.8%. Comparing the twenty-device network with the ten-device network, 
processing time increases by 38.3%. Therefore, an important finding that can be deduced is 
that, as more devices are in the network, the computational processing time increases 
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exponentially. In the case of high traffic volume scenarios, the increase in duration is again 
noticeable, as in the previous case where there is an average traffic volume. Comparing the 
ten-device network with the three-device network, the processing time increases by 63.9%. 
Comparing the network of twenty devices with the network of ten devices, the processing 
time increases by 73.3%. Again, a non-linear increase is visible, showing that the larger the 
network is, the slower the solution becomes. 

As for the proposed distributed MitM attack, its detection and mitigation requires 
higher computational resources than the attack from a single device. The details presented 
show the case where the ARP spoofing is only shared between two devices; however, this can 
scale to multiple attackers being simultaneously coordinated. Since the detection must verify 
all available network devices in tuples of K arguments, the complexity of the solution 
increases to O(ˆK), n to the power of K, where n is the number of devices in the network and K 
is the number of coordinated attackers. Of course, more optimizations can be performed, such 
as marking some devices as trusted so that they are not inspected, thus reducing the 
complexity, but this is beyond the scope of the current study. 

5.3. Discussions and Conclusions 

In later stages of development, more experimentation can be done by replacing 
components in the plugin architecture and studying new components that have better 
performance. System performance can be extended by monitoring only certain devices based 
on their addresses, thus reducing the computation time, as fewer components will be 
inspected. Another idea for further development on the physical layer of networks is to 
perform tests in heterogeneous programmable networks where WiFi devices connect to a 
switch via wireless access points. The proposed solution already supports this configuration, 
as WiFi networks are processed identically to wired Ethernet networks (they have the same 
Layer 2 header), but further study could be done in terms of the latency of signal conversions 
in the physical layer (from radio waves to electrical signals), and an access point would allow 
multiple devices to be connected in a given location. This study would provide more 
information on the possibilities of implementing this solution in a real hardware environment. 
Another idea for further development is to extend this concept to a distributed system. A 
collaborative environment can be created in which different switches can share data on 
known MAC addresses of attackers, so that an attacker can be more easily found in different 
locations of the network. A collaborative environment can integrate artificial intelligence 
techniques, such as federated learning, to detect attacks based on more complex traffic 
patterns. Network traffic between Mininet devices was generated using the iPerf tool [119]. 

Further development of the current solution may overcome ideas of local complexity 
through software and attempts to increase the performance of a single network device. 
Therefore, future trials can be included in SDN architecture plans by using virtualization of 
network functions through network hypervisors. The study presented in [120] presents 
CoVisor, a network hypervisor that allows multiple control devices to coexist on the same 
device and allows sharing their best features for optimizing network functionality. Libera is 
also a network hypervisor that has the ability to create a dedicated network infrastructure for 
managing specific network traffic [121]. Such hypervisors as CoVisor and Libera could be 
used together to create a virtualized ecosystem that allows different policies and features to 
be applied on different network infrastructures. A more concrete use case related to the 
solution presented in this security article would be to implement different attack mitigation 
strategies in different network infrastructures. Simultaneous testing and performance 
measurement can take place in separately created network infrastructures, leading to a faster 
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method of deciding which is the best method for dealing with a specific attack. However, a 
disadvantage that hypervisors can have in the context of security is that functionality is 
moved to intermediate levels of the network, but attacks are always identified preferably as 
close as possible to the source of the attack. Thus, for critical use cases, it is better to operate 
at the edge of the network and not in the upper SDN layers after the information has already 
been passed through many intermediate devices. In such a scenario, the use of a network 
hypervisor is questionable and proper benchmarking and testing should be performed before 
implementing a network infrastructure solution. 

Another concept that can be used together with virtualised and programmable 
ecosystems is that of application-specific programmable integrated circuits, in which 
functions at the software level of the application are moved to the hardware layer of the 
circuit. Thus, in theory, use cases that are implemented in the higher levels of the operating 
system can be moved to the hardware. Used together with the advantages offered by a 
network hypervisor, dynamic programmability can be configured in different network 
locations. 

Software-defined networks have the advantage of being programmable and allow the 
development of many particular network use cases. In this regard, the current solution has 
focused on creating an extendable software architecture that can detect and mitigate attacks 
based on ARP spoofing techniques in Ethernet networks created in Mininet. The solution is 
built on the Linux pipeline architecture and a plugin system, in which a sequence of 
operations is mandatory. The sequence of operations contains different modules for data 
acquisition, relevant data extraction, data analysis and decision making. Each of the 
components is replaceable using a configuration file and, depending on the network use cases 
and desired severity levels, different actions can be taken upon attack detection. The fact that 
the components are replaceable allows the system to be easily extendable and configurable. 

In conclusion, the main objective defined in 1.3.1.3. was achieved by improving 
network performance through detection and mitigation of security risks in software-defined 
networks and the desired effect of increasing the speed of essential data traffic has also been 
successfully achieved. The secondary objectives defined in 1.3.2.3. were also fully achieved 
through the following aspects: malicious traffic of ARP spoofing attacks was analysed in detail 
by performing MitM ARP spoofing attacks using the Ettercap utility in KaliLinux; the 
OpenVSwitch solution was extended with the ability to detect and mitigate ARP spoofing 
attacks; the metric for performance verification was chosen as the speed of data plane 
transfer of essential data. 

5.4. Results Dissemination 

The results obtained in this chapter were disseminated in the following publication: 
 
[122] S. Buzura, M. Lehene, B. Iancu, V. Dadarlat "An Extendable Software Architecture for 
Mitigating ARP Spoofing-Based Attacks in SDN Data Plane Layer", Electronics 2022, 11, 1965. 
doi: https://doi.org/10.3390/electronics11131965 IF 2.69 Q3 
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6. Development of a Framework for Software-Defined 

Networking Simulations 

6.1. The Framework in the Context of the Proposed Objectives 

 
Figure 6.1 The framework used in the context of the proposed objectives in this PhD thesis 

For the finality of this PhD thesis it is also necessary to incorporate the solutions of the 
main proposed objectives for the finality of the thesis into the same network. Thus, Figure 6.1 
shows how all these solutions can be merged into a single test topology. The following 
components are identified: A Kali Linux operating system that is required to perform the 
MitM attack; the Mininet-WiFi emulator installed within the virtual machine that uses the Kali 
Linux operating system, it is important to remember that Mininet-WiFi contains both the 
wireless protocol extensions and the basic functionality provided by Mininet; the control 
devices are added to the Mininet network and are referenced by IP address, this means that it 
is not required to run the control solutions on the same operating system where the Mininet 
instance is running and in this case, they will be executed from the host machine using a 
Windows operating system where the Matlab exported machine learning library can be used; 
the wireless nodes that make up a sensor network are attached to switch s1, they can be 
coordinated to send or not send data depending on the cache-based optimization solution. 
Having said that, the framework is validated for use in simulation contexts with 
heterogeneous and interdisciplinary technologies and provides a complete solution in the 
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possibilities of studying the behavior of programmable networks addressing both QoS and 
security topics, offering numerous possibilities to study the proposed contributions to 
improve the performance of software-defined networks. 

6.2. Testing Environment 

At this point it is important to reiterate that the main objective of this chapter is to 
provide architectural and implementation details on how to build a hybrid environment with 
software and hardware simulation components. The experimental work is limited to the 
design for portability, as this context of use is the only experiment that can provide accurate 
and reusable measurement values for the literature. This is because the OpenFlow packets 
that are used in this experiment are transmitted over LAN and WAN network types that are 
commonly used in modern networks. Designs for scalability, parallel computations, and 
software update delivery depend heavily on the hardware resources of the Linux machine 
running Mininet and Mininet-WiFi, which are subjective from the perspective of the current 
work. In order to simulate the above design ideas, the required components are shown in 
Figure 6.2. The configuration consists of a PC running a Linux operating system, on which 
Mininet and Mininet-WiFi were installed, hardware components, which were attached 
directly to the PC via USB interfaces (Ubertooth One and Libelium Waspmote sensor) and an 
Ethernet interface (Toradex i.MX6 board). The advantage of the approach proposed above for 
duplicating traffic and simultaneously reading multiple data from multiple hardware devices 
is the possibility to extend it to large-scale simulations, where only one sensor of each type 
can be used. This drastically reduces the cost of simulation and implementation time. 

 
Figure 6.2 Components used to create the hybrid software and hardware framework for the proposed simulations 
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6.3. Discussions and Conclusions 

The result of the research work that was in this chapter has created a hybrid software 
and hardware simulation framework for network testing. Four main design ideas were used, 
namely: design for scalability, design for parallel computation, design for portability, and 
design for software update on nodes of a wireless sensor network. These design ideas provide 
the possibility to test the system in different use cases. The use contexts presented in the 
paper are: data collection from sensors in a WSN, network security, comparative testing of 
different placement locations of SDN control devices, and the delivery of software updates in 
an SDN environment. The SDN test system that has been implemented contains contributions 
in the data plane and the control plane. The ultimate goal of using the SDN paradigm is to 
bring benefits to the application plane, which are visible from the improvements made in the 
lower SDN planes. To validate the proposed hardware software hybrid simulation approach, 
measurements were performed in the scenario designed for portability. The goal was to study 
the effect of positioning an SDN control device in different locations in the LAN containing the 
data plane, but also in a different location in the Internet. The results showed that the impact 
of data transfer between the data plane switch and the SDN control device is negligible when 
the SDN control device is located in the same LAN (regardless of the number of intermediate 
switches), but data transfer is significantly slower when the SDN control device is located in a 
different Layer 3 network. 

The main novelty proposed to introduce real-time reading of sensor data is limited to a 
number of sensors equal to the number of interfaces available on the computer, thus deducing 
the exact number of hardware devices that can connect to Mininet. These interfaces include 
the following: USB, serial, Bluetooth, etc. The number of available interfaces can be increased 
somewhat by adding external adapters or USB hubs that allow more devices to be connected. 
However, this number remains limited, and reading data from multiple interfaces consumes 
other hardware resources (processor processing power and available memory) that are 
needed for experimental calculations. As far as measurements on OpenFlow packets are 
concerned, they were performed only on the OpenFlow packet_in, which has a size between 
approximately 600 and 1400 bytes. The OpenFlow packet packet_in contains the Ethernet 
frame for which the request is made, plus a few additional bytes that are specific to the 
OpenFlow protocol. With a reduced packet size, the transmission times will have 
approximately similar values. To create a complete evaluation, the entire OpenFlow set of 
packet types could be measured for data transmission. Interpreting the results presented, the 
variation in transfer time is small, and this is due to the fact that OpenFlow is an application-
level protocol running over TCP. Establishing a connection takes up a considerable part of this 
transmission time with the three-step TCP handshake. 

Considering the wide range of SDN domain applications and large-scale environments, 
creating a real test environment is a complex and costly task. To address this limitation, a 
hybrid software and hardware simulation framework was proposed. By integrating simulated 
data with real-time sensor data (from hardware devices) in a Mininet emulator, realistic 
simulations were generated and validated in different real use cases. In addition, new datasets 
can be easily generated for specific scenarios by saving the data captured from real-time 
sensors. The newly generated datasets and scenarios can be easily replicated in other 
research projects, thus contributing to the body of science. 

In conclusion, the main objective defined in 1.3.1.4. was achieved by improving the 
performance of software-defined networks, allowing the creation of complete simulation 
scenarios that can concurrently test different functionalities using hardware devices. The sub-
objectives defined in 1.3.2.4. were also fully achieved through the following aspects: the 



 

 

 

 

25 

heterogeneity of software-defined networks is highlighted by the hybrid framework 
combining different software solutions with different hardware devices; different 
programmability concepts in different programming languages have been used to create the 
framework; programmable networks have been addressed from all architectural planes; 
different networks created in Mininet and Mininet-WiFi have been extended with data read in 
real time from hardware devices; protocols from all levels of the TCP/IP protocol stack have 
been used in the development of the framework, thus providing a complete solution for the 
created framework. 

6.4. Results Dissemination 

The work developed in this chapter was disseminated in the following publications: 

[123] S. Buzura, A. Peculea, B. Iancu, E. Cebuc, V. Dadarlat, R. Kovacs "A Hybrid Software and 
Hardware SDN Simulation Testbed", Sensors 2023, 23, 490. 
https://doi.org/10.3390/s23010490 IF: 3.847 Q2 

[124] S. Buzura, V. Lazar, B. Iancu, A. Peculea and V. Dadarlat, "Using Software-Defined 
Networking Technology for Delivering Software Updates to Wireless Sensor Networks," 2021 
20th RoEduNet Conference: Networking in Education and Research (RoEduNet), Iasi, 
Romania, 2021, pp. 1-6, doi: 10.1109/RoEduNet54112.2021.9637720. 

[125] S. Buzura, V. Dadarlat, A. Peculea, H. Bertrand and R. Chevalier, "Simulation Framework 
for 6LoWPAN Networks Using Mininet-WiFi," 2022 IEEE International Conference on 
Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 2022, pp. 1-5, doi: 
10.1109/AQTR55203.2022.9802017. 

[126] S. Buzura, A. Suciu, E. Cebuc, B. Iancu and V. Dadarlat, "Development Framework for 
Simulating Routing Behavior in Software-Defined Wireless Networks," 2022 21st RoEduNet 
Conference: Networking in Education and Research (RoEduNet), Sovata, Romania, 2022, pp. 
1-6, doi: 10.1109/RoEduNet57163.2022.9921101. 
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7. Conclusions 

7.1. General Conclusions 

This PhD thesis provides a development framework in the areas of traffic engineering, 
collaborative systems development, artificial intelligence and security, with applicability in 
software-defined networking. Personal contributions have been implemented at all levels of 
programmable networks, with the ultimate goal of improving the QoS provided by such 
systems. The resulting framework provides a complete solution for conducting research 
studies in software-defined networks using the aforementioned areas. 

The field of computer networks is an interdisciplinary field where different notions of 
programmability, management and security often overlap in research. Because of this, a very 
good theoretical understanding of these areas is required, but relevant practical experience is 
also needed to develop solutions and conduct research studies in the field of computer 
networks. For this reason, the complexity of the field and consequently of the current thesis, 
does not only have specific technical features of local implementation of the proposed 
functionalities but also has a complex overview of integrating interdisciplinary concepts with 
the role of finding compatibility between them. 

Regarding the manner in which the presents results of this PhD thesis were achieved, it 
is important to mention that some of the research topics were carried out over a long period 
of time, even over several years, until the results were successfully disseminated. The 
processes used were incremental with different collaborators (co-authors of the published 
articles) and the way of working was published in [127] at an educational conference. 
Continuing this educational theme, the laboratory activities for the Computer Networks 
subject (in the English teaching language) were also updated with topics studied and 
practically experienced during this PhD thesis. Thus, for the laboratory activities document 
referenced in [128], two completely new papers on socket programming and ARP spoofing 
attacks were added to prepare students both with general technical notions and for various 
research topics. 

7.2. Originality and Innovative Contributions of the Thesis 

Chapter 3 on traffic engineering proposed a contribution to performance improvement 
in SDWSNs. In this context, performance improvement refers to improving energy efficiency 
and increasing network lifetime. Energy efficiency in an SDWSN has been improved through 
the use of transmitted data content analysis techniques and adaptive broadcast data 
transmission. Energy efficiency is improved by reducing the number of packets transmitted in 
the software-defined network data plane. The content analysis technique was implemented at 
the level of individual programmable sensors in the data plane, where hardware resources are 
limited on network devices. In the final solution, adaptive data transmission is moved to the 
control plane and replaces data transmission in the data plane. The implemented system 
increases the network lifetime as the number of packets in the WSN layer is reduced, thus 
improving QoS by reducing traffic volume and avoiding congestion. QoE is improved by 
proactively forwarding data from the control plane to the application plane. Thus, the main 
objective proposed in 1.3.1.1 was achieved. The secondary objectives proposed in 1.3.2.1. 
were also achieved. 
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Chapter 4 with the topic of implementing a distributed and collaborative control 
scheme proposed a contribution to a more efficient definition of OpenFlow switching rules. In 
this context, performance improvement refers to reducing control traffic in the network, thus 
favouring essential data traffic and consequently increasing the throughput of essential data. 
The proposed problem was solved in two ways, using fuzzing technique and using 
decentralized federated learning technique. Both techniques have a positive result by 
reducing the control traffic in the network, but an advantage can be mentioned in favor of the 
federated learning technique, namely, that the generated rules better adjust to the actual 
traffic duration, and these rules do not remain active during traffic-free periods. Thus, the 
main objective proposed in 1.3.1.2. were achieved. The secondary objectives proposed in 
1.3.2.2. were also achieved. 

Chapter 5 concerning security proposes contributions to improve QoS in an SDN by 
removing malicious traffic from the network, thus increasing the relevant data traffic 
transmitted. Performance is thus improved by increasing the transmission speed of essential 
data. A solution for detecting and mitigating ARP spoofing attacks in the data plane of an SDN 
was implemented. The proposed software architecture is able to accommodate different 
operating environments (based on OpenVSwitch, npcap, etc.) and can integrate multiple 
software technologies for data processing. The implementation of the solution is done strictly 
in the data plane of an SDN without interaction with the control plane. The implemented 
solution was evaluated in networks of different sizes and with different levels of congestion, 
and the evaluation also shows the impact the solution has on the volume of data transmitted 
over the network in scenarios with and without the MitM attack running. Finally, a new 
distributed ARP spoofing attack is conceptualized and a behavioural analysis of the attacker's 
actions is performed. A solution for this new type of attack is also provided, thus offering a 
novelty with respect to the current state of knowledge. Thus, the main objective proposed in 
1.3.1.3. was achieved. The secondary objectives proposed in 1.3.2.3. were achieved. 

Chapter 6 concerning the creation of a framework that incorporates all the previous 
contributions proposes implementation software contributions for the simulation of 
software-defined networks. Various programming languages and socket programming 
techniques are used in Windows and Linux operating systems, but also in networks created 
using Mininet and Mininet-WiFi emulators. Different networking use cases are explored, such 
as: simulating large-scale networks; updating software on production-installed sensors 
without having wired access to them; simulating routing techniques in SDWSN; simulations 
for testing different algorithms in parallel on the same data; test scenarios for portability. 
Tests are carried out in networks with different constraints, such as: IPv4 wired networks; 
IPv6/6LowPan unwired networks; networks using services provided by the IPFS distributed 
system; networks extending the OpenFlow protocol and software solutions using this 
protocol, the Pox solution. Finally, a hybrid simulation environment is proposed using 
networks built in Mininet and Mininet-WiFi, which are extended with real-time data received 
from sensors physically connected to the host computer through different interfaces (USB, 
serial). All these contributions demonstrate the flexibility and heterogeneity of the SDN 
paradigm. The developed software simulation environments can be easily extended in the 
future to further studies in the field of programmable networks. These contributions also 
provide more implementation details, which are often missing in scientific works in the 
literature, but are necessary for the replication of studies and their validation. Thus, the main 
objective proposed in 1.3.1.4. was achieved. The secondary objectives proposed in 1.3.2.4. 
were also achieved. 

In conclusion, the proposed objectives were achieved through the performed research 
work. 
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7.3. Further Development 

Software-defined networks have gained popularity especially in datacenter or campus 
networks. A newer context is the use of the SDN paradigm in WANs, creating the SD-WAN 
topology. A possible further development is the creation of a framework based on the 
Mininet-Optical emulator which, in addition to the features of an SDN, also includes a 
simulator of the physical processes of data transmission over optical fibre. Different studies 
can be done with different parameters both at the upper levels of the TCP/IP protocol stack 
(network, Internet and application levels) and at the lower level of access to the environment. 
Thus, different test topologies can be created to serve different research studies in different 
application domains. 

Another possible further development is in the area of security, namely checking the 
susceptibility of devices in an SDN to various attacks, such as the Nethammer attack [129], 
which is actually the Rowhammer attack caused by a high volume of data traffic received from 
the network. This attack primarily involves a software solution that reads data received from 
the network interface into the same memory area (identified by a pointer). And secondly, the 
hardware device running this software solution must be using a type of RAM memory that is 
susceptible to this attack (a memory that does not completely isolate electromagnetic 
interference between transistors). Further study would involve investigating different SDN 
solutions and performing stress and penetration tests on them to cause the attack to occur. 
SDN solutions that provide access to source code can be further analysed and understood for 
how they read incoming data from the network. If such vulnerabilities are found, solutions 
can be proposed for remediation, which will lead to improvements in the quality offered by 
existing solutions. For a better understanding of these vulnerabilities the practical 
applications in [130] and [131] can be studied, they detail the processes that take place at the 
hardware level. 
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